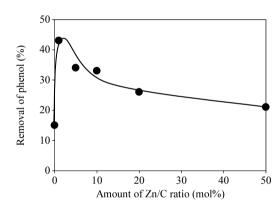




## **ഇ0B15**ൽ

## Enhanced Activity of ZnO with Addition of C<sub>3</sub>N<sub>4</sub> For Photocatalytic Removal of Phenol under Visible Light


## Faisal Hussin<sup>1</sup>, Hendrik O. Lintang<sup>2</sup>, Leny Yuliati<sup>2\*</sup>

<sup>1</sup>Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia <sup>2</sup>Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

\*Corresponding author email: <a href="mailto:leny@ibnusina.utm.my">leny@ibnusina.utm.my</a>

Phenol is a stable and hazardous compoundthat is commonly found as an industrial effluent  $^1$ . Phenol can be treated by photocatalysis using ZnO as a photocatalyst  $^2$ . Unfortunately, the use of zinc oxide (ZnO) in photocatalysis is limited due to the photocorrosion effect and poor response to the visible light  $^4$ . Various methods have been reported to improve the performance of ZnO, such as the use of carbon nitride ( $C_3N_4$ ) to suppress the photocorrosion and improve the absorption in the visible light region  $^5$ . It was reported that the ZnO- $C_3N_4$ could be prepared by mixing the powder ZnO with  $C_3N_4$ that was dispersed in methanol, followed by drying process under nitrogen atmosphere  $^5$ . In the present study, a series of ZnO- $C_3N_4$ was prepared by simplermethod, which was impregnation of zinc oxide precursor on the  $C_3N_4$ , followed by calcination process.

The effect of zinc to carbon ratio (Zn/C) on the properties and photocatalytic activity examined.XRD patterns of the samples revealed that as the Zn/C ratio increased, the intensity of diffraction peaks for ZnO also increased but the intensity for C<sub>3</sub>N<sub>4</sub> decreased. All the prepared composite materials have an extended absorption band in the visible light region due to the presence of C<sub>3</sub>N<sub>4</sub>, as supported by DR-UV Vis spectra. The prepared ZnO-C<sub>3</sub>N<sub>4</sub> composites were further investigated in the photocatalytic removal of phenol under visible light irradiation for 5 hours. All ZnO-C<sub>3</sub>N<sub>4</sub> samples showed higher activity than the bare ZnO (Figure 1). The ZnO-C<sub>3</sub>N<sub>4</sub> with Zn/C ratio of 1 mol% showed the highest photocatalytic activity for removal of phenol among all the samples. The high activity observed on the ZnO-C<sub>3</sub>N<sub>4</sub> would be due to the role of C<sub>3</sub>N<sub>4</sub> to suppress electron-hole recombination and extend the absorption of ZnO in the visible light region.



**Figure 1** Photocatalytic activity of ZnO-C<sub>3</sub>N<sub>4</sub>composites with various amounts of Zn/C ratio

- 1. Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Desalination, 2010, 261(1-2), 3.
- 2. Lathasree, S.; Rao, A.N.; SivaSankar, B.;Sadasivam, V.: Rengaraj, K. Van Camp, L.; Krigas, J. Mol. Catal. A: Chem. 2004, 223, 101.
- 3. Pardeshi, S.K.; Patil, A.B. Sol. Energy. 2008, 82(8), 700.
- 4. Neppolian, B.; Sakhtivel, S.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. J. Environ. Sci. Health. Part A. 1999. 34(9), 1829.
- 5. Yajun, W.; Rui, S.; Jie, L.; Yongfa, Z. Energy Environ. Sci. 2011, 4, 2922.

## Mr. Faisal Hussin

Universiti Teknologi Malaysia, Malaysia

Phone: 013745029 Fax: -E-mail: kirus.icai90@gmail.com

Research interests: Nanomaterials, Material Sciences, Photocatalysis

2009-2012 B.Sci.(Chemistry) Universiti Teknologi Malaysia (UTM),

Malaysia

2012-present PhD (Chemistry) Universiti Teknologi Malaysia (UTM),

