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ABSTRACT

 Sulfonated polysulfone membranes with varying degree of sulfonation have been 

successfully synthesized by electrophilic substitution via sulfonation process in this study. 

Sulfonated dense membranes were fabricated using locally available pneumatically-

controlled casting machine. Characterizations of different degree of sulfonated 

polysulfone membranes were conducted through swelling effects, ion exchange capacity 

(IEC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimeter (DSC), 

X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and proton conductivity 

measurement. It was observed that an increase in the degree of sulfonation increases the 

water uptake of the membranes and sulfonic acid group in the polymer membrane. From 

FTIR, it was clearly confirmed the occurrence of sulfonation in the polymer structure as 

the evidence of the SO3 stretching band was noticed at frequency of 1027 cm-1. It was 

found from TGA that the sulfonic acid group started to decompose at 250ºC and 

decomposition of the polymer main chain decreases by increasing the degree of 

sulfonation. The Tg value detected in this study was increased accordingly with the 

degree of sulfonation though some hindrance was found to decrease the Tg value during 

the experiments. Proton conductivity measurement of sulfonated polysulfone membrane 

was found to increase with operating temperature and degree of sulfonation. It was found 

that at higher temperature (80ºC), SPSU10 membrane exhibits proton conductivity value 

at par with that of Nafion 117 membrane. It was also observed from XRD analysis that 

dimethylformamide solvent was prone to form hydrogen bonding with sulfonic groups 

hence allows formation of a more regular structure which leads to an incipient crystalline 

character of the material structure. SEM micrographs showed clearly the altered 

microstructure of polysulfone polymer before and after the sulfonation process. 
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ABSTRAK

 Membran sulfonan polisulfona dengan pelbagai darjah pengsulfonan telah berjaya 

diperolehi dalam ujikaji ini melalui tindakbalas penukargantian elektrofilik iaitu proses 

pengsulfonan. Membran pengsulfonan padat disediakan menggunakan mesin penuangan 

bersistem kawalan pneumatik. Pencirian darjah membran pengsulfonan polisulfona telah 

dijalankan melalui kesan pembengkakan, kapasiti penukaran ion (IEC), analisis 

gravimetrik terma (TGA), Pemeteran Kalori Pengimbasan Kebezaan (DSC), X-ray 

Diffraction (XRD), Kemikroskopan Elektron Imbasan (SEM) dan keberaliran.  

Diperhatikan bahawa dengan meningkatnya darjah pengsulfonan, tahap pembengkakan 

dan kumpulan asid sulfonik dalam membran polimer diperolehi meningkat. Daripada 

analisis Spektroskopi Infra-Merah Penukaran Fourier (FTIR), jelas terbukti bahawa 

tindakbalas pengsulfonan telah berlaku pada struktur polimer dengan adanya regangan 

ikatan SO3 pada frekuensi 1027 cm-1. Daripada analisis terma, didapati bahawa kumpulan 

asid sulfonik mula menyusut pada suhu 250ºC dan suhu penyusutan rantaian polimer 

utama menurun dengan peningkatan darjah pengsulfonan. Nilai suhu peralihan kaca (Tg) 

yang diperolehi dalam ujikaji ini meningkat berkadar terus dengan darjah pengsulfonan 

walaupun terdapat beberapa faktor yang mempengaruhi penurunan nilai suhu peralihan 

kaca semasa eksperimen dijalankan. Didapati bahawa nilai keberaliran proton bagi 

membran pengsulfonan polisulfona meningkat dengan peningkatan suhu operasi dan 

darjah pengsulfonan. Pada kenaikan suhu 80ºC didapati bahawa membran SPSU10 

menunjukkan nilai keberaliran proton pada tahap yang setanding dengan membran 

Nafion 117. Melalui analisis Belauan Sinar-X (XRD), didapati bahawa larutan 

dimetilformamida (DMF) berupaya bertindakbalas dengan kumpulan sulfonik dan 

menghasilkan ikatan hidrogen dimana pembentukan ikatan ini menghasilkan struktur 

yang lebih tersusun yang menjurus kepada sifat kristal pada struktur bahan. Gambar 

mikrograf SEM menunjukkan perubahan struktur mikro bagi sulfonan polisulfona 

sebelum dan selepas proses pengsulfonan. 
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CHAPTER 1 

INTRODUCTION

1.1 Research Background 

Energy consumption has increased drastically in the last century due to the 

increase of human population and activities. World’s dependent on hydrocarbon 

fuel to create power has proven to be the major source for energy production. 

Nevertheless, high contribution of dangerous toxic and effluent release during the 

process cause hazardous threat to the environment and human life. This 

phenomenon has seriously driven research into a new modern technology 

producing clean energy without harnessing the environment as far as clean fuel is 

concerned. Fuel cell is the most efficient technology for present and future 

upcoming life as it shows excellent performance in term of its zero emission 

contaminate byproduct, high efficiency, flexibility, processability and durability.

Fuel cells are the latest promising energy producers for the future 

century. Countries like United States, United Kingdom, Japan and Canada are 

currently in the race for the reality makeover of fuel cell technology in multiple 

fields especially in transportation, stationary power and micro electronic devices. 

In addition, fuel cell research activities in Asian region especially in Japan, China 

and Taiwan (Lee et al., 2002) are now accelerating, as they are in progress to 

demonstrate the fuel cell bus and scooters for future application in the region. 
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 Malaysia as one of the rapid emergence countries has also embarked into 

fuel cell technology since 1998 under Intensify Research in Priority Area (IRPA) 

grant, which focusing on the Proton Exchange Membrane Fuel Cell for 

transportation application. This project was the pioneered project in Malaysia, and 

the second phase of the project is now underway to further develop the upcoming 

technology in the region. From this effort, Malaysia has emerged to be one of the 

possible contributors to this viable technology and probably will be ready to joint 

others as an active participant in this future technology. 

Concern with the environment and earth limited resources has led to 

introduction of commercial application of fuel cells, mainly in the field of ground 

transport and distributed power generation. General Motors, Daimler Chrysler, 

Ford, Ballard, Honda, Toyota and other big companies in the world are seriously 

concentrating on polymer electrolyte membrane fuel cell  (PEMFC) into car and 

buses and several prototype has been demonstrated to verify the performance and 

to upgrade the current performance of fuel cell system. Meanwhile for high 

capacity power generation, Solid Oxide Fuel Cell (SOFC) has made their marked 

success in the fuel cell field as they have been verified to achieve high performance 

and efficiency in high capacity grid power supply and distributed generation 

(Casanova and Veyo, 2001). 

According to a study performed by Business Communications Co., Inc. 

(US) (www.bccresearch.com), the fuel cell market is estimated at about $218 

million in 2000. With commercialization of most of the fuel cell technologies 

rapidly falling in place, this market is expected to have a steep increase to an 

estimated $2.4 billion by 2005, an AAGR (average annual growth rate) of more 

than 61.7%. With the technology’s extensive use in the vehicle market, proton 

exchange membrane fuel cell sales have become the dominant version in the 

market, bringing 2000 sales of $104 million up to $1.6 billion by 2005. Research 

on the fuel cells R&D and intellectual property (IP) studies have found that 

PEMFC was the highest amount for patent disclosure in fuel cell field and 

membrane was the most area being studied in PEMFC. This suggests that 
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fundamental research is still playing a critical role in fuel cell development, even 

while much of the industrial emphasis is on commercialization and manufacturing

processes (Barrett, 2002). 

Table 1.1: U.S. sales of fuel cell by type, 2000-2005 ($ Millions)

2000 2005 AAGR % 2000-2005

Proton exchange membrane 104.0 1640.0 73.6

Solid Oxide 54.0 260.0 36.9

Molten carbonate 25.0 450.0 78.3

Phosphoric acid 20.4 35.6 11.8

Alkaline 15.0 30.0 14.9

Total 218.4 2415.6 61.7

Figure 1.1: U.S. sales of fuel cell by type, 2000-2005 
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Fuel cells are distinguished primarily by the type of electrolyte and the 

operating temperature used. There are five types of fuel cell, which include: 

Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell (PEMFC), 

Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC) and Solid 

Oxide Fuel Cell (SOFC). However, Proton Exchange Membrane Fuel Cell 

(PEMFC) has received numerous attentions from world automotive producers due 

to its high power density and high flexibility in operation.

Membranes used in fuel cell applications are basically a proton exchange 

membrane type that is capable of transporting the proton within the membrane 

structure. The proton exchange membrane is a solid, organic polymer usually poly 

(perflourosulfonic acid) which was used as an electrolyte in Proton Exchange 

Membrane Fuel Cell (PEMFC) (which also can be known as Polymer Electrolyte 

Membrane Fuel Cell). The existence of PEMFC has been long acknowledged back 

in 1960s but it did not perform reliably in space fuel cell projects due to the high 

cost of the membranes and expensive auxiliary system for heat and water removal. 

A surprising technology turn over occurred in 1990’s when PEMFC appeared as 

the most attractive object for development especially in fleet and vehicles 

application. This is driven by significant high power densities obtained as a result 

of new development of membrane types in recent years (Kordesch and Simadar, 

1996; Carretta et al., 2001). 

 Although the US General Electric Company (GE) initiated the development 

of PEMFC in 1950s, it was the introduction of Nafion by DuPont that ensured 

continuing interest in these systems. Initially Nafion was manufactured for 

membrane cells used in the production of chlorine (chlor-alkali cells). By 1990, 

Ballard had overcome many of the engineering problems associated with PEMFC 

systems and this had stimulated many groups in the United States and Japan to 

improve the properties of the original Nafion material (Steele and Heinzel, 2001). 

The material generally used up to now, a sulfonated fluoropolymer first 

developed by US space scientists in the early 1970s, is effective but expensive. 
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Sulfonate groups, introduced by complexing the perfluorinated polymer with 

sulfonic acid, turned out to be good ionic conductors, particularly when associated 

with water molecules.  Dupont has long dominated the market with its NafionTM

brand, though Asahi Chemicals and others have introduced similar thermoplastic 

copolymers subsequently. These materials conduct well, resist attack by acids, 

bases and oxidants and have good mechanical properties, which are retained over 

time. On the downside, they are sensitive to contaminants and methanol, upset by 

over or under-hydration, lose performance in prolonged operation above about 

80˚C, and cost hundreds of dollars per square meter.  

Research groups have sought to improve the existing material or find 

alternative polymer that possess similar performance as standard Nafion. For low 

cost, however, a more radical approach is needed and the search has been on for 

alternative polymer backbones, including ‘disposable’ hydracarbon. One possibility 

to introduce the sulfonate group into the polymer structure is by sulfonation. This is 

due to its simple processing and reaction, which depends mainly on the properties 

of the sulfonating agent and polymer base unit. 

In order to achieve higher performance and efficient system, PEMFC needs 

to have a good and stable membrane operating at desired temperature and pressure. 

Thus, it is essential to identify the economical and effective ways to produce and 

manufacture the ideal membrane with desirable properties.  

1.2 Problem Statement 

As mentioned above, the development of fuel cells was driven by the space 

industry in the 1960s. At that time the PEM materials were crosslinked, 

sulphonated polystyrenes. Sulphonated fluorocarbon membranes such as Nafion 

TM, which was introduced by DuPont in the early 1970s, then superseded 

sulfonate polystyrenes as the preferred membrane materials for PEMFC. Since 
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then, Nafion remains the industry standard until today, but this material has the 

downside of being very costly to produce and require heat, high pressure and a high 

level of hydration to perform effectively (Johnstone, 2001).  

The development of low cost membranes materials for fuel cells has gained 

wide attention and turned to be the most challenging in the field of membrane 

community in the last few years. Many hydrocarbon polymers such as 

polysulfones, polyethersulfones, polyetherketones, polyether etherketones, 

polyimides, polybenzimidazole, polyoxadiazole, polyphosphazenes have been 

claimed to be possible substitutes for perflourinated ionomers provided that a 

charge group (sulfonic) is introduced into the structural unit (Kopitzke, 1999; 

Lufrano et al., 2000; 2001; Hogarth and Glipa, 2001). Among the aforementioned 

polymers, the polysulfone is considered to be the most interesting polymer due to 

its low cost, commercial availability and ease of processing. Though this study on 

sulfonated polysulfone might not be the first in the world but however it can be 

considered as a landmark for the research in fuel cell membrane in the Asian region 

by using sulfonation process. 

Based on the latest purchase pricing of the Nafion membrane material 

(which is PTFE polymer) and polysulfone polymer (Amoco Udel P1700), it was 

found that 1 kg of PTFE flouro polymer worth RM 690 meanwhile polysulfone 

polymer price is RM 198 for 1 kg of polymer.  It was clearly seen that the price of 

PTFE polymer is five times higher than the of polysulfone polymer. If the 

production and manufacturing cost of modifying PTFE membrane were to be 

included in the comparison with modifying polysulfone polymer, it is expected that 

this gap of difference would be much more higher. Therefore, in order to minimize 

the overall cost of PEMFC system; search on the cost-effective polymer is very 

crucial in PEMFC research and development. Thus the main drivers of research 

into fuel cell membrane materials is the development of cost-effective material that 

can operate at low pressure and high temperature conditions and possess the 

performance at par with Nafion (Wnek et al., 1999; Marsh, 2001).
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1.3 Research Objectives 

As described in the research background and problem statement section, 

therefore the objectives of this research are: 

(a) to develop and characterize the sulfonated polysulfone membrane for 

polymer electrolyte membrane fuel cell (PEMFC) application. 

(b) to study and compare the performance of SPSU membrane with that state of 

the art Nafion membrane. 

1.4 Scope of the Research 

In order to accomplish the set objectives, the following scope of works has 

been drawn. 

(a) Performing the sulfonation reaction at ambient temperature. 

(b) Development of a sulfonated polymer solution making and fabrication of 

sulfonated dense membranes. 

(c) Physical and chemical characterization of the produced sulfonated 

membranes. 

(d) Studies of effects of sulfonation process on polysulfone polymer by 

swelling (water uptake), thermal stability, proton conductivity measurement 

and membrane microstructure. 




