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Abstract. In this paper, the unsteady free convection flow of an 

incompressible second grade fluid in a vertical plate with ramped wall 

temperature is investigated. The fluid in magnetohydrodynamics (MHD) 

flows through a porous medium is also considered. The fluid is electrically 

conducting under the assumption of a small magnetic Reynolds number 

applied in a vertically inward direction to the flow. The governing equations 

are modeled in a rotating plate such that both the fluid and plate in unison 

with angular velocity. The exact solutions of velocity and temperature are 

obtained in closed form by using Laplace transform method. These solutions 

are presented graphically and discussed for second grade parameter  , 

rotation parameter  , porosity parameter K , magnetic parameter M , 

Prandtl number Pr , and Grashof number Gr . 
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1.0 INTRODUCTION 

 

 The study on MHD flow and porous medium (porosity) in rotating frame 

have been stimulated the interest of researcher in fluid mechanic problems due to 
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their wide range of scientific applications in various fields. Asghar et al. [1] 

studied the steady flow of a rotating third grade fluid past a porous plate using 

analytical method. The results nonlinear boundary value problem has been 

solved using HAM. They concluded that the rotation causes a reduction in the 

layer thickness. Tiwari and Ravi [2] investigated the transient rotating flow of an 

incompressible second grade fluid in a porous medium. They used Laplace 

transform technique to find mainly two basic flow situations which are a sudden 

started and a constant acceleration flow, respectively. They found that both 

steady and unsteady solutions are strongly dependent upon the porosity 

parameter. 

 

 Moreover, Hayat et al. [3] worked on the hydromagnetic oscillatory flow 

of an incompressible second grade fluid bounded by a porous plate, when the 

entire system rotates about an axis normal to the plate. The magnetic field is 

applied transversely to the direction of the flow and the problem has been solved 

analytically for steady and unsteady cases by using Laplace transform technique. 

The analysis of the obtained results showed that the flow is influenced by the 

parameters of second grade fluid, rotation and applied magnetic field.  Sajid et 

al. [4] discussed the MHD rotating boundary layer flow of viscous fluid caused 

by the shrinking surface. The similarity transformations have been used for 

reducing the partial differential equation into a system of two coupled ordinary 

differential equations. Then, HAM is employed for the analytical solution. They 

found that hydrodynamic flow is not stable for the shrinking surface and only 

MHD flow is meaningful in the case of shrinking surface. Moreover, Das et al. 

[5] discussed the unsteady hydromagnetic Couette flow of a viscous 

incompressible electrically conducting fluid in a rotating system. They solved for 

exact solution of the governing equation by using Laplace transform method. 

Solution for the velocity distribution as well as shear stress has been obtained for 

small times and also for large times. 

 

 Furthermore, Hayat et al. [6] also discussed the unsteady rotating MHD 

flow of an incompressible second grade fluid but considered in a porous 

medium. The flow is induced by a suddenly moved plate in its own plane where 

both the fluid and plate rotate in unison with the same angular velocity. Their 

analytical solutions are obtained by using Fourier Sine transform. The existing 
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solutions of Newtonian fluid have been deduced as limiting cases by choosing 

second grade parameter equal to zero. Then, Hayat et al. [7] produced a result on 

MHD flow in a porous medium of Maxwell fluid. They also using a same 

Fourier Sine transform to obtain the analytical solution of the governing 

equation. The result of the Newtonian case has been obtained as a special case by 

taking Maxwell fluid parameter equal to zero.  

 

 Recently, Khan et al. [8] studied the rotating flow of second grade fluid, 

where the fluid is electrically conducting and fills the porous region at z > 0 for 

constant and variable accelerations. In this problem, Laplace transform method 

has been used and expressed the results obtained as a sum steady-state and 

transient solutions. Also, Salah et al. [9] have solved a same problem as Khan et 

al. [8] but they produced the exact solution by using Fourier Sine transform and 

Laplace method. However, in these results, they are not using steady-state and 

transient solutions for satisfying the initial and boundary conditions. 

 

 The temperature conditions near the wall play an important role in 

several industrial applications and it was extensively studied by a number of 

researchers using different sets of thermal conditions at the boundary plate. 

Chandra et al. [10] studied the effect of ramped wall temperature on unsteady 

free natural convective flow of incompressible viscous fluid near a vertical plate. 

The dimensionless governing equations have been solved by using Laplace 

transform method. Then, Rajesh [11] also studied the unsteady free convection 

incompressible viscous fluid in vertical plate with ramped wall temperature but 

in presence of thermal radiation and MHD effects. The author used Laplace 

transform method to find the analytical solution. Deka et al. [12] has produced 

the exact solution for unsteady natural convection flow past an infinite vertical 

plate with ramped wall temperature passing through a porous medium. Laplace 

transform also has been used to solve the dimensionless governing equations of 

the fluid flows. 

Then, Seth et al. [13] investigated the influence of radiation on unsteady 

hydromagnetic natural convection transient flow near an impulsively moving flat 

plate with ramped temperature in a porous medium. In this problem, they used 

Laplace transform method to solve the governing equations. They found that, the 

magnetic field tends to decelerate fluid flow whereas thermal buoyancy force, 

radiation and permeability of porous medium have reverse effect on it for both 
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ramped temperature and isothermal plate. Here, fluid velocity and fluid 

temperature are found to be smaller in case of ramped temperature plate 

compared to the case of isothermal plate. The reason is that the ramped wall 

temperature has difference and various temperatures in every single time. 

 

 Motivated by previous studies of rotating MHD flow in porous medium, 

in this present study we are interested to tackle the problem of unsteady free 

convection flow of rotating MHD second grade fluid in porous medium with 

ramped wall temperature. The governing equations for this problem also solved 

by using Laplace transform technique. 

 

 

2.0 MATHEMATICAL FORMULATION AND SOLUTION 

 

Let us consider the unsteady free convection flow of an incompressible 

second grade fluid in the rotating infinite vertical plate with ramped wall 

temperature. The x-axis is taken along the plate in the upward direction and z-

axis is taken normal to plate. Initially, both the fluid and the plate are at rest to a 

constant temperature T∞. At t = 0
+
, both of fluid and plate start to rotate with 

constant angular velocity   parallel to z-axis. A uniform transverse magnetic 

field of strength B0 is applied parallel to the axis of rotation. It is assumed that 

induced magnetic field, the external electric field and the electric field due to 

polarization of charges are negligible. At the same time, the temperature of the 

plate is raised or lowered at T∞ + (Tw - T∞)t/t0 when t ≤ 0, and thereafter, for t > 

t0, is maintained at the constant temperature Tw. The main objective of this 

research is to study the heat transfer process of fluid motion in rotating plate. 

Under the usual assumption of Boussinesq approximation, the governing 

equations of momentum  ,F z t  and energy  ,T z t  are given as 

  

 
22 3

01 1

2 2
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2 1
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in which F u iv   is the complex velocity where u and v are its real and 

imaginary parts, ρ designates the density of the fluid, υ the kinematic viscosity, α1 

second grade parameter,  is electrical conductivity,  0 1    the porosity and 

1 0k   the permeability of the porous medium, g is the acceleration due to gravity, 

β is the volumetric coefficient of thermal expansion, T is the temperature of the 

fluid, k is thermal conductivity and cp is the specific heat capacity of the fluid at 

constant pressure. The appropriate initial and boundary conditions are 

 ,0 0 ;  0F z z   

 0, 0 ;  0F t t   

                                              , 0,  as ,  0,F z t z t    

and 

 ,0  ;  0T z T z   

 
  0

0

+  ;  0
0,

 ;  0

w

w

t
T T T t t

tT t

T t

 


  

 
 

 

 , 0   as ,  0,T z t z t    

Introducing the following non-dimensional variables 

*

0

,
F

F
v

  * 0 ,
v

z z


 *

0

,
t

t
t
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w

T T
T

T T









 Pr .
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k


  

Substitute dimensionless variables (9) into equations (1) and (2) and dropping 

out the star “*” notation, we get 
2 3

1 02 2

F F F
a b F GrT

z t z t
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   
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2

2
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which are  
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According to the above non-dimensionalisation process, the characteristic time 

0t  can be defined as
0 2

0

t
v


  [Seth et al. [13]]. 

Then, the dimensionless initial and boundary conditions (3-8) are 

 ,0 0,F z   

 0, 0 ;  0,F t t   

 , 0,   ,  0,F z t as z t    

and 

 ,0 0;  0,T z z   

       

 , 0 1

0,                    1 1

1 , 1

t t

T t tH t t H t

t

 

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



 

 , 0   ,  0,T z t as z t    

 

where H(.) is the Heaviside step function. 

 

The governing equations (10)-(11) subject to initial conditions (12) and (15) are 

solved by using the Laplace transform technique. Hence, by taking Laplace 

transform we get 

 
 

 2

1 0

2

, ,
, ,

1 1

d F z q GrT z qa q b
F z q

dz q q 

 
   

  
 

and 

 
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2

2

,
Pr , 0;  , 0,

d T z q
q T z q z q

dz
    

together with the boundary conditions in the transformed q-domain 

 0, 0,F q   

 , 0  ,  0F z q as z t    

and 

  2

1
0, ,

qe
T q

q


  

(12) 

(13) 

(14) 

(15) 

(16) 
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(18) 

(19) 

(20) 

(21) 

(22) 
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 , 0   ,  0.T z q as z t    

The solution for equation (19) by using the boundary conditions (22-23) is 

 

   Pr

2

1
, .

q
z qe

T z q e
q




  

In order to solve the solution of equation (18), substitute equation (24) into 

equation (18) and Laplace transform with corresponding conditions (20-21) is 

given by 
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The inverse Laplace transform for equation (26) can be directly obtained by 

using partial fraction. Then, we have 
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1 1 2 2 2

0 2 0

sinh cosh .m tGr Gr
F t m m t m m t e

b m b
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According to Khan et al. [8], we need to use inversion compound function for 

first term of right hand side of equation (27). Hence we get 
 

 

 

1

1

1

1
2 0 2

0

0
0 2

0 0

2
,

2

2 1 Pr
.

22

ua
t

ua st

a z
F z t e erfc e I ua t du

u

b z
erfc e I ua s dsdu erfc z

tu

 



 

 

 

 

   
   

  

    
          



 

 

 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 



 
Proceeding of 2nd International Science Postgraduate Conference 2014 (ISPC2014) 

© Faculty of Science, Universiti Teknologi Malaysia 

 

Therefore, the inverse Laplace transform of equations (24) and (25) will be 

obtained by using the second shift property 

 

           1 1  if   .aqL e F q f t a H t a f t L F q       

 Hence, by introducing equations (28) and (29), solution for equation (25) is 

 

         , , , 1 1 ,F z t U z t H t U z t H t     

and by convolution theorem 
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, * , .

t

U z t F F t F t s F z s ds    

From equation (24), we write 
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2 Pr2
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1 1 Pr Pr Pr
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2 2 2

z
z q t

z z z t
T z t L e t erfc e

q q t 


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     
          

      
 

 

we obtain the temperature distribution as 

 

       1 1, , , 1 1 .T z t T z t T z t H t     

 

In this paper, we are also discussed the solution for isothermal temperature 

at the plate. This is because, we want to compare the results of fluid flow near a 

plate with ramped wall temperature. In this case, the initial and boundary 

conditions are the same excepting equation (7) that becomes  0, 1T t   for 

0.t   Therefore, the expression for dimensionless temperature for isothermal 

plate in equation (19) is obtained as 

   Pr1
, ,

z q
T z q e

q


  

and by using Laplace transform method, we have 

 
Pr

, .
2

z
T z t erfc

t

 
   

 
 

The expression of momentum equation for this case is 

 

     3 2, , ,F z q F q F z q  

where 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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 
 3 2

1 0

.
Pr Pr

Gr
F q

q a q b


  
 

Hence, the inverse Laplace transform for equation (38) is 

 

    1

1 2

2

sinh .
Pr

m tGr
F t m t e

m

  

Again, by using convolution theorem, we get 

        3 2 3 2

0

, * , .

t

F z t F F t F t s F z s ds    

 

3.0 RESULTS AND DISCUSSION 

 

In order to insight of this ramped wall temperature problem, the velocity 

profiles of parameters second grade  , rotation  , magnetic M ,  porosity K , 

Prandtl number Pr  and Grashof number Gr  are plotted through graphs. The 

velocity profiles in Figures (1-12) are shown the comparison between isothermal 

and ramped wall temperatures for all parameters involved in real and imaginary 

parts. Figures 1-2 elaborate the effect of second grade parameter  . The velocity 

decreases and then increases on increasing second grade parameter in real and 

imaginary parts. Figure 3 described the effect of rotation parameter  in real part. 

The velocity is decreases when the value of   is increases. But, in Figure 4 for 

imaginary part, the velocity is increases with increasing the values of  . The 

effect of magnetic parameter M is discussed in Figures 5 and 6. These two 

Figures give a same behavior of velocity in real and imaginary parts. The velocity 

is decrease when the value of magnetic is increase. This is because due to the fact 

that magnetic force acts against the direction of flow and causes the velocity to 

slow down.  It is obvious to see that for larger values of K , the velocity is 

increase for both cases of real and imaginary parts in Figure (7-8). The porosity of 

fluid will reduce the drag force and hence causes the velocity to increase. Figures 

9 and 10 showed the comparison of velocity on different values of Prandtl 

number Pr  in real and imaginary part. These two graphs give same results where 

the velocity is decreases on increasing the value of Pr.  The thermal boundary 

layer thickness decreases by increasing the value of Pr.  The effect of Grashof 

number is plotted in Figures 11 and 12. When the value of Gr  is increases in real 

and imaginary parts, the velocity is also increases due to the fact an increase in 

(38) 

(39) 

(40) 
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Gr  gives rise to buoyancy effects which results in more induced flow. Moreover, 

it is observed that velocity of the fluid is lower for ramped wall temperature 

compared to isothermal temperature. 

Figure 1: Velocity profiles for different values of   with Pr 0.71 , 0.1  , 

5Gr  , 0.2M  , 2K  and 1.5t   in real part. 
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Figure 2: Velocity profiles for different values of   with Pr 0.71 , 0.1  , 

5Gr  , 0.2M  , 2K  and 1.5t   in imaginary part. 

 
Figure 3: Velocity profiles for different values of    with 0.4  , Pr 0.71 ,

5Gr   , 0.2M  , 2K  and 1.5t   in real part. 
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Figure 4: Velocity profiles for different values of    with 0.4  , Pr 0.71  ,

5Gr   , 0.2M  , 2K  and 1.5t   in imaginary part. 

 
Figure 5: Velocity profiles for different values of M  with 0.4  , Pr 0.71 , 

0.1  , 5Gr  , 2K  and 1.5t   in real part. 
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Figure 6: Velocity profiles for different values of M  with 0.4  , Pr 0.71 , 

0.1  , 5Gr  , 2K  and 1.5t   in imaginary part. 

 
Figure 7: Velocity profiles for different values of K  with 0.4  , Pr 0.71 , 

0.1  , 5Gr  , 0.2M  , and 1.5t   in real part. 
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 Figure 8: Velocity profiles for different values of K  with 0.4  , Pr 0.71 , 

0.1  , 5Gr  , 0.2M  , and 1.5t   in imaginary part. 

 

Figure 9: Velocity profiles for different values of Pr  with 0.4  , 0.1  , 

5Gr  , 0.2M  , 2K  and 1.5t   in real part. 
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Figure 10: Velocity profiles for different values of Pr  with 0.4  , 0.1  , 

5Gr  , 0.2M  , 2K  and 1.5t   in imaginary part. 

Figure 11: Velocity profiles for different values of Gr  with 0.4  , Pr 0.71 , 

0.1   , 0.2M  , 2K   and 1.5t   in real part. 
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Figure 12: Velocity profiles for different values of Gr  with 0.4  , Pr 0.71 , 

0.1   , 0.2M  , 2K   and 1.5t   in imaginary part. 

 

4.0 SUMMARY AND CONCLUSION 

 

In this paper, a mathematical model is presented to investigate the free 
convection effect on the unsteady MHD rotating flow of a second grade fluid in 
porous medium with ramped wall temperature at the wall. The equations of 
velocity and temperature are transformed into dimensionless forms and then 
solved analytically by using the Laplace transform technique. The graphical 
results are prepared to observe the effects of various parameters such as second 
grade parameter  , rotation parameter  , magnetic parameter M , porosity 

parameter K , Prandtl number Pr , and Grashof number Gr . The effect of 
parameters  , M and Pr are shown the same behavior. The velocity is decrease 
with increasing the value of  , M and Pr . But, the velocity will increase when 
the value of parameters K  and Gr is increase. As expected, the effect of 
parameter   on the velocity shows opposite behavior. The velocity is decrease in 
real part but increase in imaginary part when the value of   is increase. 
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