THE EFFECTIVENESS OF PAVEMENT REHABILITATION AT KUALA LUMPUR KARAK HIGHWAY

ONN BIN ABDUL RANI

A Project Report submitted in partial fulfillment of the requirements for award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MAY,2007

Specially dedicated to my beloved father, mum, my sisters, brothers and all my friends.

ACKNOWLEDGEMENT

I would like to express my appreciation to many people who have contributed to successful completion of this project paper. Most especially, I thank my supervisor, for all his entire guidance, advices and suggestions in preparing this project. To all examiners, thank you for the suggestion, comment and ideas for overall my project.

My gratitude and sincere thank also goes to all my course mate and friends who participate by offering their helping making this project a reality.

And last but not least, thanks to all my beloved family especially my father, mother and my sisters who have contributed in giving me the moral support, encouragement and understanding in carrying out the project to such great degree. Thank you for being there whenever I need you all.

Thank you.....

ABSTRACT

General function of a pavement is to provide a safe and comfortable riding surface to road users. However, pavement distress is major problems faced by contractor. Pavement rehabilitation is essential which can be improve and remain the functional of the roads networks and can be retard of deterioration. Since rehabilitation of pavement is a vital and continuous activity, maintenance shall be done effectively to avoid any reoccurrence and repeatedly works. Thus, in fulfill and meet pavement goals, the aim of this study is to determine sources of pavement distress and to determine the effectiveness of rehabilitation works in term of cost, quality and time at Kuala Lumpur Karak Highway. In view to the above, a thorough planning and scheduling had been organized on the methodology such as reading, adopting literature review, combination of analyzing of case study and adopting of actual data on site. The process of data collection involved obtaining data from contract document, bill of quantity, consultant reports and operations report. Then, the data are presented and analyzed conjunction with the aim and objectives of this study. In conclusion, some sources of distress identified to improve the effectiveness of pavement rehabilitation implemented at KL Karak Highway.

ABSTRAK

Fungsi utama permukaan jalan adalah menyediakan keselamatan dan keselesaan kepada pengguna. Sungguhpun begitu, kerosakkan permukaan jalan merupakan pemasalahan terbesar kepada kontraktor. Pembaikpulihan jalan, adalah amat penting dimana ianya dapat meningkatkan dan mengekalkan fungsi jalan serta ianya dapat mengekang kerosakkan jalan yang berterusan. Oleh kerana pembaikan jalan adalah penting dan merupakan satu aktiviti yang berterusan, penyelenggaran jalan hendaklah hendaklah dijalankan secara berkesan agar ianya tidak berterusan rosak. Oleh itu, tujuan bagi kajian ini adalah untuk menentukan punca-punca kerosakkan jalan dan menentukan keberkesanan pembaikpulihan jalan daripada segi masa, kos dan kualiti. Kajian kes ini akan dijalankan di Lebuhraya Kuala Lumpur Karak. Sehubungan dengan itu, satu perancangan yang menyeluruh telah dilakukan terhadap kaedah-kaedah yang digunakan iaitu merangkumi daripada pembacaan, kajian literature, kombinasi kajian kes dan data daripada tapak. Proses bagi mendapatkan data-data telah diperolehi melalui kontrak dokumen, bill of quantity, laporan jururunding dan laporan operasi. Seterusnya, data-data yang diperolehi akan dipersembah dan dianalisis berdasarkan kajian kes yang dijalankan. Akhirnya, satu kesimpulan untuk kajian ini didapati seperti kajian dijalankan. Sebagai kesimpulan, punca-punca kerosakkan jalan yang dikenalpasti adalah meningkatkan keberkesanan kerja-kerja pembaikpulihan jalan.

TABLE OF CONTENT

TITLE

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	XV
1	ΙΝΤΡΟΡΙΙΟΤΙΟΝ ΤΟ ΟΤΙΙΝΥ	

1 INTRODUCTION TO STUDY

CHAPTER

1.1	Introduction	1
1.2	Problem of Study	2
1.3	Aim and Objectives of Study	3
1.4	Scope of Study	4
1.5	Methodology	4

2 FLEXIBLE PAVEMENT

2.1	Introduction			
2.2	Pavement Behavior and	Pavement Behavior and Performances		
	2.2.1 Pavement Com	ponent and Materials	6	
	2.2.1.1 Surfacir	ıg	7	
	2.2.1.2 Road Ba	ase	8	
	2.2.1.3 Sub Bas	se	8	

PAGE

		2.2.1.4 Sub Grade	8
2.3	Functi	ions of Flexible Pavement	9
	2.3.1	Road user Requirement	10
	2.3.2	Engineering Requirement	11
2.4	Failur	e Definitions	12
	2.4.1	Failure Modes	12
	2.4.2	Failure Manifestations	12
	2.4.3	Failure Mechanism	13
	2.4.4	Pavement Behavior	14
2.5	Types	and Sources of Pavement Distress	15
	2.5.1	Crack	15
		2.5.1.1 Crocodile Cracks	16
		2.5.1.2 Block Cracks	17
		2.5.1.3 Longitudinal Cracks	19
		2.5.1.4 Transverse Cracks	20
		2.5.1.5 Crescent Shaped Cracks	21
		2.5.1.6 Edge Cracks	23
	2.5.2	Surface Deformation	25
		2.5.2.1 Rutting	25
		2.5.2.2 Corrugations	27
		2.5.2.3 Shoving	28
	2.5.3	Surface Defects	30
		2.5.3.1 Bleeding	30
		2.5.3.2 Ravelling	32
		2.5.3.3 Polishing	33
		2.5.3.4 Delimination	34
	2.5.4	Patch	36
	2.5.5	Pothole	37
	2.5.6	Edge Cracks	38
		2.5.6.1 Edge Cracks	38
		2.5.6.2 Edge Drop-offs	40

3 METHOD OF REHABILITATION

viii

41

3.2	Select	ion Procedure	41
3.3	Rehab	vilitation Options	43
	3.3.1	Restoration	43
	3.3.2	Resurfacing Structural	44
	3.3.3	Reconstruction	45
3.4	Restor	ration	46
3.5	Rejuv	enating	47
	3.5.1	Crack Sealing	48
	3.5.2	Cutting and Patch	49
	3.5.3	Thin Bituminous Overlays	53
		3.5.3.1 Surface Dressings	53
		3.5.3.2 Slurry Seals	55
		3.5.3.3 Thin Hot Mix	56
3.6	Resur	facing	58
	3.6.1	Resurfacing on Cracked Surfaces	59
	3.6.2	Resurfacing on Rutted Surfaces	61
	3.6.3	Resurfacing on Bleeding Surface	62
	3.6.4	Resurfacing on Corrugated Surface	62
	3.6.5	Resurfacing on Weathered Surface	62
3.7	Recon	struction	63

4 **RESEARCH METHODOLOGY**

4.1	Introduction	67
4.2	Determination of the Research Objectives	67
4.3	Literature Review	68
4.4	Data Collections	68
4.5	Data Analysis	69

5 DATA COLLECTIONS AND ANALYSIS

5.1	Introduction		
5.2	To determined sources of pavement distress		72
	5.2.1	Water Factor	72
		5.2.1.1 Pavement Infiltration	74
		5.2.1.2 Water Seepage from Raise of	

ix

		Water Table	74
		5.2.1.3 Water Seepage from Higher Level	75
	5.2.2	Diesel Spillage Factor	75
	5.2.3	Climbing Lane Factor	77
5.3	To Ev	aluate the Effectiveness of	
	Paven	nent Rehabilitation	78
	5.3.1	Time	79
	5.3.2	Quality	80
	5.3.3	Cost	84

6 DISCUSSION OF RESULTS

6.1	Introd	uction	87
6.2	To det	termined sources of pavement distress	87
	6.2.1	Water Factor	88
		6.2.1.1 Pavement Infiltration	88
		6.2.2.2 Water Seepage from Raise of	
		Water table	88
		6.2.2.3 Water Seepage from Higher Level	89
	6.2.2	Diesel Spillage Factor	89
	6.2.3	Climbing Lane Factor	90
6.3	To Ev	aluate the Effectiveness of	
	Paven	nent Rehabilitation	90
	6.3.1	Time	91
	6.3.2	Quality	91
	6.3.3	Cost	92

7 CONCLUSIONS AND RECOMMENDATIONS

7.1	Introduction	93
7.2	Conclusion and Recommendation	93
7.3	Recommendation for further study	95

96

LIST OF TABLE

TABLE	NO.	TITLE	PAGE
2.1		Relationship between failure mode,	
		manifestation and probable mechanism	13
2.2		Possible causes and probable treatments of	
		crocodile cracks	17
2.3		Possible causes and probable treatments of	
		block cracks	18
2.4		Possible causes and probable treatments of	
		longitudinal cracks	19
2.5		Possible causes and probable treatments of	
		transverse cracks	21
2.6		Possible causes and probable treatments of	
		crescent shaped cracks	22
2.7		Possible causes and probable treatments of	
		edge cracks	24
2.8		Possible causes and probable treatments of	
		Rutting	26
2.9		Possible causes and probable treatments of	
		Corrugated	27
2.10		Possible causes and probable treatments of	
		Shoving	29
2.11		Possible causes and probable treatments of	
		Bleeding	31
2.1.2		Possible causes and probable treatments of	
		Raveling	32

2.13	Possible causes and probable treatments of			
	Polishing	34		
2.14	Possible causes and probable treatments of			
	Delimination	35		
2.15	Severity levels of pothole	37		
2.16	Possible causes and probable treatments of			
	Pothole	37		
2.17	Possible causes and probable treatments of			
	Edge breaks	39		
2.18	Possible causes and probable treatments of			
	edge drops	40		
5.1	Comparison Average between JPS and KLK	73		
5.2	Diesel Spillage at Kuala Lumpur Karak Highway			
	years 2004-2006	76		
5.3	Breakdown and Stopped Vehicle at Kl Karak			
	Highway (2004-2006)	77		
5.4	Time to Complete Pavement Rehabilitation Works	79		
5.5	Differences JKR specification with concessionaire	81		
5.6	Types of Pavement Distress	82		
5.7	Cost Distributions on Pavement Rehabilitation at			
	KLK Highway (Contract Amount)	84		
5.8	Cost Distribution on Pavement Rehabilitation at			
	KLK Highway Based on Site Activity	86		

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE	
1.1	Research methodology sequence	4	
2.1	Sources of subsurface water in pavement (FHWA, 1992)		
2.2	Typical serviceability requirement for different		
	class of road AASHO (AASHO road test)	10	
2.3	Stresses and strains in a bituminous pavement.	15	
2.4	Photograph of crocodile cracks	17	
2.5	Photograph of block cracks		
2.6	Photograph of longitudinal cracks	20	
2.7	Photograph of transverse cracks	21	
2.8	Photograph of crescent shaped cracks	23	
2.9	Photograph of edge cracks	24	
2.10	Photograph of rutting	26	
2.11	Photograph of corrugated	28	
2.12	Photograph of shoving	29	
2.13	Photograph of bleeding	31	
2.14	Photograph of raveling	33	
2.15	Photograph of polishing	34	
2.16	Photograph of delimination	35	
2.17	Photograph of potholes	38	
2.18	Photograph of edge breaks	39	
5.1	Comparison average graf between JPS and KLK	74	
5.2	Diesel Spillage at Kuala Lumpur Karak Highway		
	years 2004-2002	76	
5.3	Breakdown and Stopped Vehicle at Kl Karak		

	Highway (2004-2006)	78
5.4	Total of NCR recorded during pavement rehabilitation	82
5.5	Total of Defects Recorded after Pavement Rehabilitation	83
5.6	Cost Distributions on Pavement Rehabilitation at	
	KLK Highway (Contract Amount)	85
5.7	Cost Distributions on Pavement Rehabilitation at	
	KLK Highway Based on Site Activity	86

LIST OF ABBREVIATIONS

ADT	-	Average Daily Traffic
IKRAM	-	Institut Kerja Raya Malaysia
ISSA	-	International Slurry Seal Assocation
MHA	-	Malaysia Higway Authority
NCR	-	Non Conforming Records
SAMI	-	Stress Absorbing Membrane Interlayer

CHAPTER 1

INTRODUCTION TO STUDY

1.1 Introduction

Flexible pavements almost are being used at all networks of local roads, federal roads, expressway, highways and others road in our country. It is important that of these flexible pavements meet the required of pavement performances goals. Once the construction of the pavement works is completed, it is most essential to implement pavement preventive maintenance that emphasizes keeping roads in good condition through early application of maintenance treatments.

Pavement maintenance and rehabilitation major and minor incorporates all activities undertaken to provide and maintain serviceable roadways. Huge amount of money or capital had already being invested in the construction of roads and highways. In this country, several highways had been constructed namely North South Highways, East Coast Expressway, Penang Bridge, Shah Alam Expressway, Kulim-Butterworth Expressway, Seremban – Port Dickson Hihgway, Malaysia – Singapura Second Crossing Expressway, Sungai Besi Highway, Cheras – Kajang Highway, Damansara Puchong Highway, Ampang Kuala Lumpur Elevated Highway, Lebuhraya Penyuraian Trafik Kuala Lumpur Barat (SPRINT), Lebuhraya Baru Pantai (NPE), Lebuhraya Lingkaran Penyuraian Trafik Kajang (SILK), Lebuhraya Koridor Guthrie (GCE) and Kuala Lumpur - Karak Highway. Huge amount of money would also be invested on the continuous maintenance of highways which is vital to ensure road worthiness, safety and end user satisfaction.

Kuala Lumpur Karak Highway was privatise in year October 1994, responsible on operations and maintenance of highways. Kuala Lumpur - Karak highway start from KM 19.20 and ends at KM 79.20 with total length will be 60km. On August 2004, highway concessionaire was executing theirs major project at Kl Karak, pavement rehabilitation. This project is divided to six main packages and was awarded to three main contractors with sum of contract amounting around RM 60,000,000.

1.2 Problem Of Study

Since 2004, several problems are frequently encountered during operations and maintenance of KL Karak Highways. Some of the problems such as ageing of operations and services building, slope stability, highways safety and flexible pavement distress.

However, flexible pavement distress is a major problem faced by concessionaire of KL Karak Highway during their operations and maintenances. The problems during operations were identified as follows:

- 1. Poorly identifying type of flexible pavement distresses
- 2. Poorly identifying sources of pavement distresses
- 3. Ineffectively corrective maintenance of pavement
- 4. Poorly identifying method of rehabilitations.

5. Poorly implementation method of rehabilitations during constructions

1.3 Aim And Objectives Of Study

The aim of this study is to evaluate the Pavement Rehabilitation as a method to repair the existing pavement in order to meet pavement performances goals and to fulfill the standard requirement. The study will cover the pavement behaviour and performances, types of distresses in flexible pavement, sources of pavement problems, selection methods or options of rehabilitations and standard specifications requirement during constructions works. This study will evaluate the performance of flexible pavement from completed pavement rehabilitation and to ensure that the initial objectives are achieved. To achieve the above aim, the following objectives are identified:

1. To determine sources of pavement distress at Kuala Lumpur Karak Highway

2. To evaluate the effectiveness of pavement rehabilitation in term of time, cost and quality at Kuala Lumpur Karak Highway

1.4 Scope of Study

The scope of this study shall be on the highway flexible pavement on the problem at Kuala Lumpur - Karak Highways and limited to year 2004 until 2006.

1.5 Brief of Methodology

The methodology used in conducting this research is through literature search. The literature search for the study obtained through are journal papers, conference papers, technical reports, books and websites browsing to understand and meet the objectives of the study. Besides that, the data for study has been generated using methodology case study. The overall sequence of research process undertaken is shown in Figure 1.1.

Figure 1.1 Research methodology sequence