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Abstract. An analysis is presented to establish the exact solution of Stokes' 

second problem for magnetohydrodynamic (MHD) rotating flows of 

Maxwell fluid in a porous medium. Based on modified Darcy's law the 

expressions for dimensionless velocity are obtained by using Laplace 

transform method. The derived steady and transient solutions satisfying the 

involved differential equations and imposed boundary and initial conditions. 

The influence of various parameters on the velocity has been analyzed in 

graphs and discussed.  
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1.0 INTRODUCTION 

 

Many non-Newtonian fluids in nature including fossil fuels, food stuff, 

cosmetics, pharmaceuticals, polymers blends etc display complex behavior 

which can exhibits shear thinning/thickening effects, elasticity, anisotropy, yield 

stress. Such fluids cannot be examined by using the Navier-Stokes equations. 

The complex behavior of non-Newtonian fluids can be described by a nonlinear 

relationship between the shear stress and shear rate. The mathematical modelling 
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in the non-Newtonian fluids present a problematic and more nonlinear equations 

than the Navier-Stokes equations. The resulting equations add further 

complexities when magnetohydrodynamic flows in a porous space have been 

taken into account. Ample applications for the flows of non-Newtonian fluids in 

a porous medium are encountered in irrigation problems, heat-storage beds, 

biological systems, process of petroleum, textile, paper and polymer composite 

industries. In addition, the rotating flows are more significant in geophysical, 

cosmical and astrophysical applications. Over the last few decades, a great 

multitude of studies have been devoted to the flows of non-Newtonian fluids in a 

porous medium (e.g. [1-15] to mention just few recent attempts). Although there 

is a reasonable literature on the rotating flows of non-Newtonian fluids [16-25] 

but only few investigations have been presented for the transient rotating flows 

of non-Newtonian fluids [26-30] in a porous medium. Hence it is the objective of 

this study to put forward such analysis. In view of such motivation, we discuss 

the unsteady MHD and rotating flow of a Maxwell fluid bounded by an 

oscillating plate. The fluid occupies a porous medium. The governed 

mathematical problem is solved for the steady and unsteady solutions. The 

obtained results are plotted and analyzed carefully. 

 

 

2.0 PROBLEM STATEMENT 

 

Let us consider the Cartesian coordinates  , ,x y z  with the rigid oscillating 

plate at 0.z   Incompressible, MHD and homogeneous Maxwell fluid fills the 

semi infinite porous space 0.z   Here z axis is taken normal to the plate. The 

fluid and plate both are at rest at 0t  and for 0,t   the whole system (i.e. fluid 

and plate) exhibits a rigid body rotation with the constant angular velocity   

about the zaxis. In addition, the plate at 0z   also performs oscillations. The 

fluid is electrically conducting by constant magnetic field applied in the 

z direction. Induced magnetic field is not taken into account. In view of 

aforementioned assumptions, the governing flow equation can be expressed as 

[26] 
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subject to the following initial and boundary conditions 

 
 
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,0 0 ; 0,

F z
F z z

t


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
                                (2) 

       0 0 0 00, cos or 0, sin ; 0,F t U t F t U t t                      (3) 

 , 0 ; ; 0.F z t z t                                        (4) 

In above expressions, ,F u iv    indicates the fluid density,   the dynamic 

viscosity,   the electrical conductivity, 0  the relaxation time, 0U  the amplitude 

of oscillations, 0 the oscillating frequency,  0k  the permeability and 

 0 1    the porosity of the  porous medium. 

 

 

Fig. 1. The physical model and coordinate system  
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3.0 SOLUTION OF THE PROBLEM 

Setting 

2
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the problem statement in dimensionless variables becomes 
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     0, cos or (0, ) sin ; 0,G G                             (8) 

 , 0 ; ; 0,G                                          (9) 
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                  (10) 

and   the kinematic viscosity. The solutions of problems consisting of Eqs. (6)-

(9) are 

 2 2

0 02 2
( , ) exp ,c

q
G q q a q b

q
  


   


                        (11) 

 2 2

0 02 2
( , ) exp ,sG q q a q b

q


  


   


                        (12) 

where the subscripts c  and s  have been used for the cases of cosine and sine 

oscillations of the plate. 

We rewrite Eqs. (11) and (12) as follows 

1 3( , ) ( ) ( , ),cG q G q G q                                        (13) 

2 3( , ) ( ) ( , ),sG q G q G q                                        (14) 
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employing the convolution theorem [33] we have 
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By inverse Laplace transformation in Eqs. (15) and (16) we get [33]  
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Insertion of above expressions in Eqs. (17) leads to the following results 
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We note that the above starting solutions are meaningful for both small and 

large times. The last term in each expression approaches zero when  is large. 

Hence this term shows the transient behavior of the velocity. Using 
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the corresponding steady state ( , )cs ssG G  and transient solutions ( , )c sG G   can 

be written as  
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The result in Stokes' first problem (i.e. when 0 ) is 
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For  1 0,
K

M    Eq. (26) reduces to the dimensionless velocity field given by 

Eq. (43) in [31]. When 0M    and ,K   then Eqs. (19) and (20) 

corresponding to hydrodynamic fluid in a nonporous space and non-rotating 

frame become 
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It is found that the above expressions are similar to that of Eqs. (20) and (21) 

in [31]. For viscous fluid [32], Eqs. (17), (18) and (20 can be easily recovered 

from Eqs. (23)-(25) when .01 
K

M  
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4.0 GRAPHICAL RESULTS AND DISCUSSION 

 

In this section we are interested to predict the real and imaginary parts of 

velocity for various parameters of interest including  , , ,M K   and  .  For 

this aim we display Figs. 2-6. Here the Figs. 2-6 have been potrayed for the 

cosine oscillation of a plate. The variation of    on the velocity is shown in Fig.  

.2  It can be seen that the amplitude of velocity increases and boundary layer 

thickness decreases for the real part of velocity. However, imaginary part of 

velocity decreases when   is increased. Fig. 3 presents the effects of M and one 

can note that an increase in M  reduces the flow velocity and the boundary layer 

thickness. This is because of the reason that the magnetic force acts as a resistive 

force to flow. It can be also noted from the governing Eq. (1) that increasing the 

porosity K yields an effect opposite to that of .M  Fig. 4 obviously indicates this 

phenomenon. This is in accordance with the fact that an increase in permeability 

of the porous medium reduces the drag force which causes an increase in the 

velocity. The effects of   is clearly shown in Fig. 5. It is observed that effects of  

  on the real part of velocity is similar to that of  .M  However, the behaviors of  

  and M  on the imaginary part of velocity are not similar. Fig. 6 depicts the 

variation of the velocity for different values of .  It is noted that the variation of 

time on the velocity is similar to that of K . However, the real part of velocity 

reduces to the steady state more quickly than the imaginary part of velocity. 

 

a b

Fig. 2: Influence of the fluid parameter   on the velocity field. 
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a b

Fig. 3: Influence of the MHD parameter  M  on the velocity field. 

a b

Fig. 4: Influence of the porosity parameter K  on the velocity field. 

a b

Fig. 5: Influence of the rotation parameter   on the velocity field. 
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a b

Fig. 6: Influence of time  on the velocity field. 

 

 

5.0 CONCLUSION 

 

Motivated by the transient solutions for the problems in a rotating frame, we 

have studied the flow of Maxwell fluid over an oscillating rigid plate. The steady 

and transient solutions are developed. The derived expressions satisfy the 

prescribed initial and boundary conditions. It is noticed that the fluid rheological 

character, angular velocity and magnetic parameter are capable of changing the 

flow patterns significantly. Many flows cases for instance the Stokes first 

problem and viscous fluid are shown as the limiting cases of the present 

investigation. 
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