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ABSTRACT 

In this paper, the effects of MHD on unsteady free convection flow with time dependent 

shear stress  are analyzed. The effects of thermal radiation and porosity on the flow are also 

studied. Closed-form solutions in general form are obtained by using the Laplace transform 

technique. The obtained results for velocity and temperature are found to satisfy all the 

imposed initial and boundary conditions and can be reduced to known solutions from the 

literature as limiting cases. The velocity profile is presented as a sum of convective and 

mechanical parts. The effects of shear stress and effective Prandtl number on velocity as 

well as temperature profiles are presented graphically and discussed in details. 
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INTRODUCTION 

The researchers in fluid mechanics usually deal with three types of boundary value 

problems namely: (a) shear stress on boundary; (b) velocity on boundary and (c) mixed 

boundary value problems. Amongst these, the problems with shear stress at the boundary 

are specifically important [1]. It is because, the no slip boundary condition may not be 

necessarily applicable to flows of some polymeric fluids that can slip or slide on the 

boundary. Thus, the shear stress boundary condition is particularly meaningful. Bearing in 

mind the importance of shear stress at the boundary, several researchers have considered it 

in their problems. However, most of them studied it in the absence of MHD and free 

convection effects [2]. Recently Rubbab et al. [3] in their pioneering work obtained general 

solutions for free convection flow of viscous fluid with time dependent shear stress at the 

boundary. In this continuation, Fetecau et al. [4] established some general solutions for 

MHD natural convection flow with radiative heat transfer and slip condition over a moving 

plate. 

The MHD flow of an electrically conducting fluid past an impulsively started vertical 

plate, under the action of a transversely applied magnetic field has been studied in the 

paper of Soundalgekar and Murty [5]. Radiation effects on MHD flow past an 

impulsively started infinite isothermal vertical have been presented by Chandakara and 
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Raj [6]. In the paper of Samiulhaq et al [7], MHD free convection flow of an 

incompressible viscous fluid past an infinite vertical oscillating plate with uniform 

heat flux in porous medium has been studied. Quite recently, Khan et al. [8] 

investigated the effects of time dependent wall shear stress on unsteady MHD 

conjugate flow in a porous medium with ramped wall temperature. However, no attempt 

is done so far to study free convection flow of viscous fluid with MHD effects under the 

condition of time dependent shear stress at the boundary.   

 

MATHEMATICAL FORMULATION 
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The corresponding initial and boundary conditions are 
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The radiation heat flux under Rosseland approximation is given by 
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It is supposed that the temperature difference within the flow are much small, then Eq.     

can be linearized by expanding into Taylor series about and neglecting higher order terms 

takes the form 
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Introducing Eq.  (5)   into Eq.  (4)  and putting the obtained result in Eq.  (2) , we get 
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In order to reduce Eqs. (1), (3), and (6) into their non-dimensional forms, we introduce 

the following dimensionless variables 
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into Eqs.  (1) and  (6)   and dropping out the " 

 " notation, it yields 
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The corresponding dimensionless initial and boundary conditions are 
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EXACT SOLUTION 

Applying Laplace inverse transform to Eqs.  (8)   and  (9)  and using the initial 

conditions from Eq. (10) , then taking inverse Laplace transform we get 
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correspond to the convective and mechanical parts of velocity, 

and 
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LIMITING CASE 

In this section we discuss one of the  limiting cases of our general solutions 

In this case we take the arbitrary function ( ) ( ),f t fH t where f is a dimensionless 

constant and  ( )H   denotes the unit step function. After time  0,t   the infinite vertical 

plate applies a constant shear stress to the fluid. The convective part of the velocity remains 

unchanged while the mechanical part takes the following form 
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equivalently 
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for  0, 0pK M  .  

Moreover, if we take 0M   , Eq. (15) reduces to the form 
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which is equivalent to [1, Eq. 28] with the correction of  .pK   

Furthermore,  in the absence of  both  0pK   and  0M   in Eq. (15), we get 
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which is in good agreement with result reported earliar [2, Eq. 23]. 

RESULTS AND DISCUSSION 

In order to understand the physical aspects of the problem, the numerical results for 

velocity and temperature are computed and plotted for various parameters of interest such 

as magnetic parameter M  , porosity parameter  ,pK  effective Prandtl number  

Pr ,eff
Grashof number  Gr  , dimensionless time  t  and shear stress . Here we discuss 

two of them in detail. The effects of the shear stress f induced by the bounding plate on the 

non-dimensional velocity profiles are shown in Figure. 1. The velocity of fluid is found to 

decrease with increasing  f  which is strong agreement with [1]; Figure. 4 . 
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Figure 1. Velocity profiles for different values of  

 

It is found that velocity increases with increasing  .t  Graphical results to show the 

influence of the effective Prandtl number Pr eff
  on velocity profiles are presented in 

Figure. 2 It is observed that the velocity is a decreasing function with respect to  Pr eff
 . 

This graphical result agrees with the previously published by [1]; Figure . 2.  

 

Figure 2. Velocity profiles for different values of Pr eff
 

The temperature variations against y  for various values of effective Prandtl numbers are 

highlighted in Figure. 3. The significant decrease of the temperature is found as a result of 

an increase of the effective Prandtl number. 
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Figure 3. Temperature profiles for different values of Pr eff
 

 

SUMMARY AND CONCLUSION 

The purpose of this work is to analyze the unsteady MHD free convection flow of an 

incompressible viscous fluid over an infinite plate that applies an arbitrary shear stress to 

the fluid. Exact solutions for velocity, temperature are obtained using the Laplace 

transform technique and expressed in terms of the complementary error function. It is 

found that velocity of the fluid  ,u y t   can be written as a sum of its convective and 

mechanical components  , ,cu y t  respectively  , .mu y t
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