

ନ୍ଧ**P099**ବ୍ୟ

Generation of Active Protonic Acid Site From Cyclohexane Over Pt/SO₄²⁻-Al₂O₃Catalyst

S. Triwahyono^{1,2} & A.A. Jalil^{3,4}

¹Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. ²Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. ³Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. ⁴Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310

UTM Johor Bahru, Johor, Malaysia.

Generation of active protonic acid sites for isomerisation of cyclohexane over $Pt/SO_4^{2-}Al_2O_3$ catalyst was studied. $Pt/SO_4^{2-}Al_2O_3$ was synthesized and calcined at 823K. Characterization was carried out with XRD, BET ammonia-TPD, pyridine-preadsorbed IR spectroscopy, and FTIR. The XRD result showed that the addition of Pt and SO_4^{2-} did not change the phase of γ -Al₂O₃. The specific surface area of $Pt/SO_4^{2-}Al_2O_3$ was 163 m²/g. Pyridine-preadsorption study showed that $Pt/SO_4^{2-}Al_2O_3$ consists of protonic acid and Lewis acid sites which appear at wavenumber of 1455 cm⁻¹ and 1545 cm⁻¹. The ratio of extinction coefficient, $\epsilon_{1455}/\epsilon_{1545}$ was 2.0. In the absence of hydrogen, isomerization of cyclohexane resulted 3% and 85% of conversion of cyclohexane and selectivity of methyl-cyclopentane, respectively. These results indicated that the isomerisation occurs although in the absence of hydrogen. Generation of protonic acid sites from cyclohexane was observed by pyridine-preadsorbed FTIR, where protonic acid sites were formed and Lewis acid sites were decreased in the heating of $Pt/SO_4^{2-}Al_2O_3$ in cyclohexane. This phenomenon indicated that the formation of protonic acid sites induced by cyclohexane is a reversible process. Generation of active site from cyclohexane is widely applicable concept for active sites over $Pt/SO_4^{2-}Al_2O_3$.

Key Words: *Pt/SO*₄²⁻-*Al*₂*O*₃, cyclohexane, isomerisation, protonic acid sites, Lewis acid sites.

Prof. Dr. Sugeng Triwahyono

¹Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. ²Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

Email : sugeng@utm.my http://www.sugengdirect.com

