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ABSTRACT 

Low Pressure Reverse Osmosis Membrane (LPROM) has been introduced to water and 
wastewater industries in the past few years due to the high cost of operational and maintenance 
of conventional high-pressure RO membrane system. LPROM may remove more than 90% of 
heavy metals depending on the operating conditions of the system. LPROM with operating 
pressure less than 100 psi is commercially available to make treatment system more affordable 
and cost effective. Therefore, the aim of this study was to produce high-quality drinking water 
using LPROM system by removing heavy metals and other contaminants. The main objective of 
this study was to evaluate the effectiveness of LPROM for rejection of heavy metals, under 
different operating parameters (i.e. pressure, feed concentrations and pH). A commercially 
available LPROM (ES20) system manufactured by Nitto Denko Company was used in this study. 
The experimental design was carried out using Response Surface Methodology (RSM). Two 
types of wastewater containing heavy metals (i.e. synthetic polluted water containing copper and 
magnesium from copper chloride and magnesium sulphate solutions, and raw water from ex- 
mining pool from Tasik Biru, Sarawak) were studied. The experimental study for copper showed 
that higher operating pressure increased permeate flux and higher feed concentration and pH 
values increased the percentage of removal. However, the two-way interaction parameter (i.e. 
pressure vs. pH, pressure vs. feed concentration and pH vs. feed concentration) showed 
insignificant effects in determining permeate flux and copper removal. For magnesium, all 
parameters and all two-way interaction were significant in determining the percentage of 
magnesium removal. The higher the operating pressure resulted in a higher permeate flux and 
percentage of magnesium removal. A higher the value of pH has caused a lower permeate flux. 
However, it will increase the percentage of magnesium removal. Besides, the higher the feed 
concentration of magnesium was also resulted the higher percentage of magnesium removal. The 
optimum range of operating pressure for both copper and magnesium removal was between 90 
to 120 psi and at pH between 5.5 and 7.5. The optimum statistical model for these processes 
based on the experimental conditions of this study indicates that operating pressure was the most 
significant parameter in determining the permeate flux. However, the statistical analysis of 
heavy metals removal was statistically insignificant and showed that the range of parameters in 
the study appears to be less significant to develop a sensitive and comprehensive model. This 
was due to the transport or separation mechanism between micropollutants and membrane 
surface, effect of chemical characteristics as well as effect of metal complexation. As a 
conclusion, operating conditions such as operating pressure and pH must be taken into account 
when designing the LPROM system for an optimum process in order to achieve a better heavy 
metals removal with higher permeate flux. 
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ABSTRAK 

Sistem membran osmosis balikan bertekanan rendah telah diperkenalkan dalam proses 
olahan air dan airsisa industri berikutan daripada kos operasi dan penyelenggaraan yang tinggi 
oleh sistem konvensional osmosis balikan bertekanan tinggi. Sistem ini dapat menyingkirkan 
lebih dari 90% bahan cemar bersaiz mikro bergantung kepada keadaan operasi sistem. Kini, ia 
telah dikomersialkan dengan tekanan kurang daripada 100 psi bagi menjadikan sistem ini lebih 
berkemampuan dan kos efektif. Matlamat utama kajian ini adalah untuk menghasilkan air 
minum berkualiti tinggi menggunakan osmosis balikan bertekanan rendah di samping 
menyingkirkan bahan cemar bersaiz mikro. Objektif kajian ini adalah untuk menilai 
keberkesanan membran osmosis balikan bertekanan rendah dalam menyingkirkan bahan cemar 
bersaiz mikro bergantung kepada parameter operasi yang berbeza seperti tekanan, pH dan 
kepekatan larutan. Membran komersial (ES20) diperbuat oleh Nitto Denko Company digunakan 
dalam kajian ini. Rekabentuk ujikaji dilaksanakan dengan menggunakan Response Surface 
Methodology (RSM). Dua jenis airsisa telah diuji, iaitu airsisa sintetik daripada larutan kuprum 
klorida dan magnesium sulfat dan air mentah dari kawasan bekas perlombongan, Tasik Biru, 
Sarawak. Keputusan bagi larutan kuprum menunjukkan bahawa lebih tinggi tekanan yang 
digunakan dapat meningkatkan hasil fluks dan lebih tinggi kepekatan masukan larutan dan nilai 
pH, meningkatkan hasil penyingkiran. Walau bagaimanapun, interaksi parameter dua hala 
(tekanan lwn. pH, tekanan lwn. kepekatan larutan masukan dan pH lwn. kepekatan masukan 
larutan) tidak mempengaruhi dalam penentuan hasil fluks dan juga peratus penyingkiran kuprum. 
Untuk magnesium, semua parameter dan interaksi dua hala parameter mempengaruhi dalam 
menentukan peratus penyingkiran magnesium dan juga hasil fluks. Lebih tinggi tekanan yang 
digunakan, dapat meningkatkan hasil fluks dan juga peratus penyingkiran magnesium. Nilai pH 
yang tinggi menyebabkan hasil fluks berkurang. Walau bagaimanapun, ia akan meningkatkan 
peratus penyingkiran. Di samping itu, kepekatan masukan yang lebih tinggi juga akan 
menghasilkan peratus penyingkiran yang tinggi. Julat optimum untuk operasi tekanan bagi 
proses ini adalah antara 90 hingga 120 psi dan pada pH antara 5.5 dan 7.5. Model statistik yang 
optimum bagi proses ini menunjukkan bahawa tekanan adalah parameter penting dalam 
menentukan hasil fluks. Namun, analisis statistik untuk penyingkiran bahan cemar bersaiz mikro 
menunjukkan bahawa julat parameter dalam kajian ini tidak begitu mempengaruhi dalam 
membentuk model yang peka dan merangkumi proses. Ini berikutan daripada mekanisma 
pergerakan atau pemisahan antara bahan cemar bersaiz mikro dan permukaan membran, kesan 
daripada sifat kimia serta kesan daripada kompleksasi logam. Kesimpulannya, parameter operasi 
seperti tekanan dan pH adalah penting dalam merekabentuk sistem membran osmosis balikan 
bertekanan rendah bagi menghasilkan proses yang optimum dalam mencapai penyingkiran 
bahan cemar dan hasil fluks yang tinggi. 
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CHAPTER I 

INTRODUCTION

This chapter presents an overview of the micropollutants contamination in ex-

mining pools and previous studies conducted on membrane technology, especially using 

Low Pressure Reverse Osmosis Membrane (LPROM) to remove micropollutants for 

drinking water production. The objectives and background of the study are also stated in 

this chapter. The scope of work are defined and the importance of this study are 

presented. Lastly, this chapter also presents the structure of the thesis. 

1.1  Background of the Study 

Direct contamination of surface waters with micropollutants from mining, 

smelting and industrial manufacturing is a long-standing phenomenon.  In Malaysia, 

water samples from ex-mining pools have been reported containing various 

micropollutants, especially heavy metals (Yusof et al., 1996; Morgensen et al., 2001). 
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Heavy metals are conservative pollutants and some of them are harmful to 

health. Some of these compounds may suppress the immune system, leading to 

increased susceptibility to disease while some may be carcinogenic.  For example, some 

heavy metals such as copper, mercury and arsenic, for which the proposed guideline 

values for drinking water quality are quite low (in the range of µg/L to a few mg/L) 

owing to their carcinogenic effects or other risk factors to public health (Crespo et al.,

2004).

Generally, these types of micropollutants contained in polluted raw water can 

cause problems in water treatment plants. They can inhibit the biological treatment 

processes and reduce the treatment efficiency of the treatment plants (Buckley et al.,

2001). Thus, various technologies have been applied to remove micropollutants in water 

and wastewater, such as coagulation, filtration, lime softening, activated carbon and 

membrane technology. Although many of them have proved to be technically feasible, 

other factors such as cost, operational requirements and aesthetic considerations have 

not been favourable in some cases.

Membrane technology is considered as one of the most effective processes for 

water and wastewater treatment. It is a compact system, economically feasible and has 

high rejection level of pollutants (Oh et al., 2000). Membrane technology has been given 

special focus in water treatment processes because of its capability in removing physical 

and chemical matters at a higher-degree of purification. It is commonly divided into 

microfiltration, ultrafiltration and reverse osmosis (RO), which utilizes pressure 

differentials (Oh, 2001). Nowadays, RO is one of the effective technologies to remove 

almost all pollutants, especially those with low concentrations. RO technology is also 

used today in large water treatment plants. It produces good quality of potable water 

from brackish and seawater resources, reclaim contaminated water sources and reduce 

water salinity for industrial applications. In addition, the application spectrum of RO 

membrane elements covers household units to produce higher quality of drinking water 

(Wilf, 1998). 
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However, the use of RO system has been limited due to high operational cost to 

keep the pressure at high level and maintain its components.  RO requires high pressure 

system and need extensive pre-treatment. Over the history of wastewater treatment and 

reclamation by RO, developments in membrane technology have resulted in a variety of 

advancements. These advancements included enhancements in salt rejection capabilities, 

chemical stability and perhaps most importantly, pressure requirements (Filteau and 

Moss, 1997). Hence, in the past few years, low pressure reverse osmosis membrane 

(LPROM) has been introduced to water and wastewater industries (Ujang and Anderson, 

2000; Filteau and Moss, 1997; Hofman et al., 1997; Ozaki et al., 2001).

LPROM is not a new concept in membrane technology. Its inception could be 

traced back to the 1960s (Ujang and Anderson, 2000). At that time, LPROM system was 

not an attractive system because of low flux and non-reliable membrane materials.  For 

the past 15 years, many improvements were made to the membrane and different models 

were introduced into the market. One of the goals of many studies carried out recently 

was to reduce the operating costs of RO, by lowering the required operating pressure of 

the system. In the mid-1990s, membrane manufacturers began marketing high-rejection-

high-flux LPROM (Nemeth, 1998). Recently, LPROM with operating pressure less than 

100 psi is available commercially to make the system more affordable and cost effective. 

Most studies carried out so far on LPROM have been focused on bench-scale 

feasibility approach using various pollutants. The applications of LPROM for 

micropollutants removal, particularly the investigation of operating parameters effect 

(i.e. pressure, feed pH and feed concentration) on separation of metal chelates, study on 

transport phenomena based on electrostatic, steric hindrance and filtration effect of 

LPROM as well as the effect of metal complexation, have not been studied extensively 

up to date.
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1.2 Objectives of the Study  

The aim of this study was to produce high-quality drinking water, using LPROM 

system to remove micropollutants from feed water. This can be achieved by the 

following specific objectives:- 

i. To evaluate the effectiveness of LPROM for rejection of micropollutants, 

using synthetic wastewater, i.e. magnesium and copper under different 

operating parameters, such as pressure, feed concentrations and pH. 

ii. To analyze and optimize the pressure range and other associated 

operating parameters for rejection of micropollutants using response 

surface methodology.  

iii. To investigate the feasibility of micropollutant removal from an actual 

ex-mining pool water, Tasik Biru, Sarawak and to study the effect of 

metal complexation. 

iv. To develop a statistical model for the removal efficiency using LPROM. 
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1.3  Scope of the Study 

This study focused on the performance of LPROM, which was evaluated by 

response parameters, i.e. permeate flux and the percentage of micropollutant removal. 

This study was conducted on an experimental rig and the analytical studies include 

physical and chemical procedures, particularly to evaluate the performance and 

effectiveness of LPROM system.  

The experimental design was carried out using response surface methodology 

(RSM). RSM is a statistical and mathematical technique which is useful for developing, 

improving and optimizing processes. All experiments were investigated under different 

operating parameters, i.e. pressure, pH and feed concentration.  

Two types of wastewater containing micropollutants were studied i.e. synthetic 

polluted water containing micropollutants i.e. copper (Cu) and magnesium (Mg) from 

copper chloride and magnesium sulphate solutions, and raw water from an ex-tin mining 

pool from Tasik Biru, Sarawak. 
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1.4  Importance of the Study 

Various technologies have been applied to remove pollutants in raw water, such 

as ion exchange, activated carbon and membrane separation (Oh et al., 2000). Due to 

high costs of operation and maintenance of conventional high-pressure RO membrane 

system, LPROM has been introduced to the water and wastewater industries in the past 

few years (Ujang and Anderson, 1996; Filteau and Moss, 1997; Hofman et al., 1997; 

Ozaki et al., 2001). The importance of this study are as follows:- 

i. Water and wastewater treatment using LPROM can remove more than 

90% of micropollutants depending on the operating parameters of the 

system. In order to achieve the optimum value of removal and flux 

rate, this study will be useful to determine the best operating 

conditions for LPROM system.  

ii. This study will provide insight on the transport phenomenon of solutes 

through the LPROM charged membrane, which can affect the overall 

performance of LPROM systems.  

iii. This study will provide a statistical model which acts as the basic 

reference in identifying the effectiveness of LPROM system in treating 

water and wastewater. 
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1.5 The Organization of the Thesis 

This thesis consists of five chapters. Chapter I gives an overview of 

micropollutants contamination in ex-mining pools and studies conducted on membrane 

technology, especially LPROM. An overview of the theoretical background of studies 

conducted on membrane technology, especially LPROM, and theory of membrane 

transport are presented in Chapter II. Chapter III presents the methodology used in this 

study including on the design of experiments. Factorial design analysis and response 

surface methods (RSM) were described in this chapter.  

Chapter IV presents the results of the experimental studies that have been 

described in Chapter III. Findings are combined and discussed holistically in this 

chapter. The last chapter, Chapter V, stated the conclusions of this study. 

Recommendations for future studies are also outlined in this chapter. 




