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ABSTRACT 

 

 

 

 

Power system stabilizers (PSS) have been widely used to damp low frequency 

electromechanical oscillations which occur in power systems due to disturbances. If no 

adequate damping is available, the oscillation can increase and cause system 

separation. Power system stabilizers (PSS) are installed in power system generator to 

help the damping of power system oscillations. There are many approaches to enhance 

damping while extending the power stability limit .To improve power system stabilizer 

(PSS)design problem include optimal control ,adaptive and self-tuning  control , PID 

control ,robust control, variable structure control and intelligent control. In this paper 

the power stabilizer is based on Recurrent Neuro-fuzzy Inference System (RNFIS) 

design controller. In order to test the robustness of the proposed design procedure of 

the (RNFIS), simulations will be carried out for the three-phase to ground fault and 1-

phase fault at the middle of one of the transmission line. After these simulations, we 

will compare the result between a lead-lag and recurrent neuro-fuzzy controllers to see 

their difference in disturbances. The optimal solutions will be compared where the 

expected result will show that the oscillations in time response of the machine speed 

and the rotor angle is damped more effectively when the recurrent neuro-fuzzy 

controller and applied to the system.  
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ABSTRAK 

 

 

 

 

Penstabil sistem kuasa (PSS) telah digunakan secara meluas untuk meredam 

ayunan elektromekanikal berfrekuensi rendah yang disebabkan oleh gangguan di 

dalam sistem kuasa.  Sekiranya redaman tidak mencukupi, ayunan akan bertambah 

kuat dan boleh menyebabkan perpecahan sistem.  Untuk mengatasi masalah ini, PSS 

dipasang di dalam penjana sistem kuasa.  Terdapat banyak cara untuk meninggikan 

redaman ketika menambahkan had kestabilan kuasa.  Dengan menggunakan kawalan 

optima, kawalan adaptif dan tuning-kendiri, kawalan PID, kawalan tegar dan kawalan 

berubah struktur, dan kawalan pintar, ia boleh mengatasi masalah rekabentuk PSS.  

PSS di dalam tesis ini adalah menggunakan rekabentuk kawalan Recurrent Neuro-

fuzzy Inference System (RNFIS).  Simulasi telah dilakukan terhadap sistem tiga fasa ke 

kesilapan pembumian dan kesilapan sistem satu fasa di pertengahan garisan transmisi 

untuk menguji ketegaran sistem yang dicadangkan.  Perbandingan di antara kawalan 

mendulu-mengekor dan kawalan pengulangan neuro-fuzzy turut dinyatakan di dalam 

tesis ini.  Perbandingan menunjukkan kawalan pengulangan neuro-fuzzy adalah lebih 

baik  
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CHAPTER 1 

                                                      

                                                   

 

 

INTRODUCTION 

                            
 

 

 

1.1 Background of power system Oscillation  

 

 

In an interconnected power system, the synchronous generators should rotate at 

the same speed and power flows over tie-lines should remain constant under normal 

operating conditions. However, low frequency electromechanical oscillations may 

occur when a disturbance is applied to the power system. These oscillations can be 

observed in most power system variables like bus voltage, line current, generator rate 

and power.  Power system oscillations were first observed as soon as synchronous 

generators were interconnected to provide more generation capacity and more 

reliability to a power system. Originally, the fairly closely connected generators were 

observed to swing against each other at frequencies of around 1-2 Hz. Damper 

windings on the generator’s rotor were used to prevent the amplitude of oscillations 

from increasing. After fast excitation systems were introduced to prevent the 

generators from loosing   synchronism following a system is fault, it was noticed that 

this kind of excitation system always tends to reduce the damping of the system 

oscillations [1]. Power System Stabilizers (PSSs), which are the excitation system 

based damping controllers, were then widely used to add damping torque and increase 

the damping of these oscillations. 
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Power system oscillations are generally associated with the dynamics of 

generators, turbine governors and excitation systems and can be represented by the 

linear zed swing equation of a synchronous generator around an operating condition 

as follows: 

  

              ( remr DTT )
Hdt

d ωω Δ−Δ−Δ=Δ
2
1                                               (1-1) 

 

                            rdt
d ωωδ Δ=Δ 0                                                                            (1-2) 

 

 

 
Time s 

Figure 1.1:  Line flow transient –August 10, 1996 western USA/Canada system 

 

 

              Where 

                   Δωr is the per unit speed deviation of the generator (radians/sec) 

                   Δδ is the rotor angle deviation (radians) 

                  ω 0 is the base rotor electrical speed (radians/second) 

                  Tm, Te are the mechanical torque and electrical torque, respectively 

                    H is the inertia of the generator 

                   D is the inherent damping coefficient 
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The electrical torque can be further represented as [2] 

 

                    ΔTe = KS (s)    Δδ + KD (s)Δωr                                                          (1-3) 

 

     Where KS and KD are synchronizing and damping torques, respectively. They are 

sensitive to generator operating conditions, power system network parameters, and 

excitation system parameters. 

           

By substituting (1-2) and (1-3) into (1-1), with ΔTm = 0 , we obtain 

               

                 0.).(2

0

=Δ+Δ++Δ δδδ
ω SD KKDH &&&                                                      (1-4) 

          

The characteristic equation for (1-4) is given by 

             

                                0
22

02 =++ +

H
K

S
H

DK
S SD ω

                                                   (1-5) 

 

 For the system to be stable, KD+D and KS have to be positive. If KS is 

negative, the system will have at least one positive real root and the generator will 

slip out of synchronism without any oscillation. If KD+D is negative, the system will 

have at least one root with positive real part. Normally, the effect of AVR in an 

excitation system with moderate or high response is to introduce a positive 

synchronizing torque component and a negative damping torque component. 

Therefore, KS is positive and KD+D could be negative. In the case of KD+D being 

negative, the system will have complex roots with positive real parts and exhibits 

oscillations with increasing magnitude. This dissertation explores the controller 

designs for enhancing the damping of low frequency power oscillations. 
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1.2 Problems of Conventional Power Control 

 

 

Today, PSS are widely used on synchronous generators. The most commonly 

used PSS, referred to as the Conventional PSS (CPSS), is fixed parameter analog –type 

device. The CPSS first proposed in 1950, is based on the use of a transfer function 

designed using the classical control theory [2].It contains a phase compensation network 

for the phase different from the excitation controller input to the damping torque output. 

By appropriately tuning the phase and gain characteristic of the compensation network, 

it is possible to set the desired damping ratio. CPSSs are widely used in power systems 

these days to improve power system dynamic stability. The conventional lead-lag power 

system stabilizer (CPSS) is widely used by power system utilities. Other types of PSS 

such as proportional integral power system stabilizer (PI PSS) and proportional integral 

derivation power system stabilizer (PID PSS) have also been proposed. 

 

 

The CPSS designed for a particular operation condition around which a linear 

zed transfer function model is obtained. The high non-linearity, very wide operating 

condition and unpredictability of perturbations of power system exhibit the following 

problems to the CPSS: 

 

 The accuracy of linear model for the power system. 

 

 The accuracy of the parameter for that model. 

 

 The effective tuning of the CPSS parameters. 

 

 The interaction between various machines. 

 

However, the CPSS is a linear controller which generally cannot maintain the 

quality of performance at other operating condition. 
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1.3 Computational Intelligence Techniques 

 

 

Recently, many intelligent system techniques have been developed and 

introduced, such as neural network and fuzzy logic. Artificial neural networks and 

fuzzy logic system have recently emerged as attractive tools for engineering 

applications. Fuzzy logic provides a convenient method for constructing nonlinear 

controllers via the use of expert knowledge [3] .Therefore, the recent direction is to 

integrate the use of neural network and fuzzy logic system in order to combine their 

different strengths and overcome each others weaknesses to generate a hybrid 

solution. 

 

 

 

 

1.4 Thesis Objective and Scope of Work 

 

 

The objective of this study is listed as follows: 

 

i. To present an approach for designing intelligent power system stabilizer. 

 

ii. To study and understand the nature of power system stabilizer and the  

structure of power system generating.  

 

iii. To design and simulate a power system stabilizer based on recurrent 

neuro-fuzzy algorithm.  

 

iv. To make a comparison in the performance between controller responses 

signals of conventional    power system and recurrent neuro-fuzzy system. 
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In this project, the scope of work will be undertaken in the following stages: 

 

i. Study the power system stability phenomena for a signal generator and 

interconnected synchronous generators.  

 

ii. Design and analyze the effectiveness of intelligent PSS using Recurrent 

Neuro-fuzzy structure (RANFIS) in MATLAB m-file and evaluate it into 

the proposed power system stabilizer. 

 

iii.  Propose intelligent power system stabilizer that damp the low frequency 

oscillation. 

        

 

 

 
1.5 Thesis Outline  

 

 

The thesis is organized as follows: 

 

Chapter 2 describes the basic theory of synchronous generator such as the 

model and related equations of the relationship between generator and load. it also 

briefly discusses power system stability and presents some cases of interconnected 

synchronous generator. 

 

Chapter 3 discuses the basics of intelligent control techniques by Fuzzy logic 

and neural network. Some mathematical formulations of the control system are also 

explained in this chapter. Brief explanations about the behavior of Fuzzy logic and 

Neural Network are also given. 

Chapter 4 explains the proposed artificial neural network and fuzzy logic in 

dynamic system Identification and control. The structure of the adaptive PSS based 

on recurrent neuro-fuzzy is proposed. The control algorithm of the new PSS is also 

discussed in this chapter. 
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Chapter 5 presents the simulation results of the recurrent neuro fuzzy design 

and discussion on the result produced from the simulation using MATLAB. The 

structures of recurrent neuro fuzzy are tested in online learning mode. using dynamic 

plant. 

 

Chapter 6 gives a conclusion of the thesis and recommendations to further 

improve this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 
 

 




