RECURRENT NEURO FUZZI CONTROLLER POWER SYSTEM STABILIZER

MOSBAH RAMADAN A. SHALLUF

UNIVERSITI TEKNOLOGI MALAYSIA

To my Beloved Mother, Father, Brothers, sisters and wife.

ACKNOWLEDGMENT

In the name of Allah, Most Gracious, and Most Merciful

Praise be to Almighty Allah (Subhanahu Wa Ta'ala) who gave me the courage and patience to carry out this work. Pease and blessing of Allah be upon his last prophet Mohammed (Sallulaho-Alaihe Wassalam) and all his companions (Sahaba), (Razi-Allaho-Anhum) who devoted their lives towards the prosperity and spread of Islam.

My deep appreciation and heartfelt gratitude goes to my supervisor, Dr .Hj .Mohd Fauzi Othman for his kindness, constant endeavor, and guidance and the numerous moments of attention he devoted through out this work. He has given me a lot of guidance regarding the understanding of artificial intelligence. I have learned so much not only in the area of my specialty but also in the style of doing research.

I extend my deepest gratitude to my close friend, Eng. Abdel razig Saeed Mohammed from Sudan, for his encouragement and motivation. A special thanks and deepest gratitude go to my brother, Eng. Abdsalam Ramadan Shalluf for helping me and giving me strong encouragement.

Family support plays a vital role in the success of any individual. Therefore I would like to convey a heartfelt thanks to my parents, brothers, and other family members including all my uncles, aunties and their families. Their prayers and encouragement always helped me take the right step in my life.

ABSTRACT

Power system stabilizers (PSS) have been widely used to damp low frequency electromechanical oscillations which occur in power systems due to disturbances. If no adequate damping is available, the oscillation can increase and cause system separation. Power system stabilizers (PSS) are installed in power system generator to help the damping of power system oscillations. There are many approaches to enhance damping while extending the power stability limit .To improve power system stabilizer (PSS)design problem include optimal control, adaptive and self-tuning control, PID control, robust control, variable structure control and intelligent control. In this paper the power stabilizer is based on Recurrent Neuro-fuzzy Inference System (RNFIS) design controller. In order to test the robustness of the proposed design procedure of the (RNFIS), simulations will be carried out for the three-phase to ground fault and 1phase fault at the middle of one of the transmission line. After these simulations, we will compare the result between a lead-lag and recurrent neuro-fuzzy controllers to see their difference in disturbances. The optimal solutions will be compared where the expected result will show that the oscillations in time response of the machine speed and the rotor angle is damped more effectively when the recurrent neuro-fuzzy controller and applied to the system.

ABSTRAK

Penstabil sistem kuasa (PSS) telah digunakan secara meluas untuk meredam ayunan elektromekanikal berfrekuensi rendah yang disebabkan oleh gangguan di dalam sistem kuasa. Sekiranya redaman tidak mencukupi, ayunan akan bertambah kuat dan boleh menyebabkan perpecahan sistem. Untuk mengatasi masalah ini, PSS dipasang di dalam penjana sistem kuasa. Terdapat banyak cara untuk meninggikan redaman ketika menambahkan had kestabilan kuasa. Dengan menggunakan kawalan optima, kawalan adaptif dan tuning-kendiri, kawalan PID, kawalan tegar dan kawalan berubah struktur, dan kawalan pintar, ia boleh mengatasi masalah rekabentuk PSS. PSS di dalam tesis ini adalah menggunakan rekabentuk kawalan *Recurrent Neuro-fuzzy Inference System* (RNFIS). Simulasi telah dilakukan terhadap sistem tiga fasa ke kesilapan pembumian dan kesilapan sistem satu fasa di pertengahan garisan transmisi untuk menguji ketegaran sistem yang dicadangkan. Perbandingan di antara kawalan mendulu-mengekor dan kawalan pengulangan *neuro-fuzzy* turut dinyatakan di dalam tesis ini. Perbandingan menunjukkan kawalan pengulangan *neuro-fuzzy* adalah lebih baik

TABLE OF CONTENTS

CHAPTER		PAGE	
	DECLARATION		
	DED	iii	
	ACK	NOWLEDGEMENTS	iv
	ABS	ГКАСТ	vi
	ABS	ГКАК	vii
	TAB	LE OF CONTENTS	viii
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xiii
	LIST	OF SYMBOLS AND ABBREVIATIONS	xvi
	LIST	OF APPENDENCES	xviii
1	INTE	RODUCTION	1
	1.1	Background of power System Oscillation	1
	1.2	Problems of Conventional Power Control	4
	1.3	Computational Intelligence Techniques	5
	1.4	Thesis Objective and Scope of Work	5
	1.5	Thesis Organized	6
2	LI	FERATURE REVIEW ON CONTROL FOR	8
2		POWER SYSTEM STABILIZER	
	2.1	Introduction	8
	2.2	Methods of (RANFIS)	9
	2.3	Power System Background	17
		2.3.1 Power System stability	17
		2 3.2 Power System Damping Control	19
		Strategies	

Dampin	ng Control in the transmission path	20
2.3.4 Da	amping control at generation	21
Power	System Stabilizer	22
2.4.1	Adaptive Power System Stabilizer	23
ELLIGH	ENT PSS CONTROL TECHNIQUE	25
Introduc	ction	25
Fuzzy L	logic system	26
3.2.1	Fuzzy set theory	27
Fuzzy L	ogic Control System	30
3.3.1	fuzzification module performs the	30
]	Following function	
3.3.2	defuzzification module performs the	30
]	Following functions	
3.3.3	Fuzzy Rule base	31
3.3.4	Sugeno-Type Fuzzy Inference	33
3.3.5	FLC Design Methodology	35
3.3.6	PSS Based on Fuzzy Logic Theory	36
Adaptiv	e Fuzzy Logic Controller	36
3.6.1	Structure of Adaptive Fuzzy Controller	37
Neural	Network	38
3.5.1	Neural Network Architectures	39
3.5.2	PSS Based Artificial Neural Networks	42
2.5.3	Advantage of Neural Network	42
2.5.4	Limitations of Neural Network	43
2.5.5	Neural Network Application in Power	44
2	System	
2.5.6	Neural Network in PSS Design	45
3.5.7	Learning Algorithm	46
3.5.8	ANN Paradigms and Classifications	47
3.5.9	Back propagation Learning Algorithm	48
Neuro-F	Fuzzy	50
3.6.1 A	Adaptive neuro fuzzy inference system	51
	Dampin 2.3.4 Da Power 3 2.4.1 A ELLIGE Introduc Fuzzy L 3.2.1 I Fuzzy L 3.2.1 I 3.3.2 I 3.3.2 I 3.3.3 I 3.3.4 S 3.3.5 I 3.3.6 I Adaptiv 3.5.1 I 3.5.2 I 2.5.3 A 2.5.3 I 2.5.3 A 2.5.4 I 2.5.3 A 2.5.5 S 2.5.6 I 3.5.7 I 3.5.8 A 3.5.9 Neuro-F 3.6.1 A	Damping Control in the transmission path 2.3.4 Damping control at generation Power System Stabilizer 2.4.1 Adaptive Power System Stabilizer ELLIGENT PSS CONTROL TECHNIQUE Introduction Fuzzy Logic system 3.2.1 Fuzzy set theory Fuzzy Logic Control System 3.3.1 fuzzification module performs the Following function 3.3.2 defuzzification module performs the Following functions 3.3.3 Fuzzy Rule base 3.3.4 Sugeno-Type Fuzzy Inference 3.3.5 FLC Design Methodology 3.3.6 PSS Based on Fuzzy Logic Theory Adaptive Fuzzy Logic Controller 3.5.1 Neural Network Architectures 3.5.2 PSS Based Artificial Neural Networks 2.5.3 Advantage of Neural Network 2.5.4 Limitations of Neural Network 2.5.5 Neural Network Application in Power System 2.5.6 Neural Network in PSS Design 3.5.7 Learning Algorithm 3.5.8 ANN Paradigms and Classifications 3.5.9 Back propagation Learning Algorithm Neuro-Fuzzy 3.6.1 Adaptive neuro fuzzy inference system

3

3.7	Recur	rent Neural Network	53
	3.7.1	The Dynamic of General Recurrent	54
		Network	
	3.8.2	Application of Recurrent Network	55
	3.8.3	Control Application	56
THE	DESIG	N OF RECURRENT NEURO FUZZY	58
CON	TROLI	LER POWER SYSTEM STABILIZER	
4.1	Introd	uction	58
4.2	Power	System Model	59
4.3	Neuro	Fuzzy Inference System	61
	4.3.1	Learning Algorithm of ANFIS	64
4.4	ANFI	S System Structure	66
	4.4.1	The Plant Identifier	67
	4.4.2	Fuzzy logic Based ANFIS PSS	69
4.4.3	Neura	l Network Representation of Fuzzy	72
Logic			
4.5	Recur	rent Neuro Fuzzy Inference System	75
4.6	Design	n of Adaptive Controller	77
	4.6.1	Identification of Nonlinear System	77
SIMU	JLATI(ON AND RESULTS	80
5.1	Introd	uction	80
5.2	Neces	sary Data Requirements for PST	81
	5.2.1	The power System structure	81
	5.2.2	Generator Dynamic Data	81
	5.2.3	Simulation Control Data	82
	5.2.4	Dynamic Model Functions	82
	5.2.5	Standard Dynamic Drivers	83
5.3	Expa	nding the Capabilities of PST	83
	5.3.1	Model Structure	83
	5.3.2	Vector Computation	84
	5.3.3	Use of Templates	85

	5.3.4	Transient Stability Simulation	85
	5.3.5	Small Signal Stability	86
5.4	Dampi	ng Controller Design	87
5.5	Systen	n Model: 4-Generator, 13-Bus and 2-	88
Area			
5.6	RANI	FIS Controller Design of Power System	94
	5.6.1	Online learning of RANFIS	94
Param	eters		
	5.6.2	Comparing between three types of	95
rules			
	5.6.3	Comparing between CPSS and	100
RANF	FIS		
CONO	CLUSI	ONS AND FURTHER WORK	112
6.1	CONC	LUSIONS	112
6.2	FURTH	IER WORK	113

REFRENCE	115
APPENDICES	119-129
A-E	

6

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Crisp set vs. Fuzzy set-Definition and Operations	27
3.2	Neural Network Activation Functions	30
3.3	ANN classification l	40
4.1	Rule Extracts from the conventional controller	71

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	line flow transient August 10, 1996 western	2
	USA/Canada system	
2.1	Is block dig ram of a typical PSS	23
3.1	Fuzzy set example of power system bus bar voltage	28
	level	
3.2	(a,b,c,d) types of membership function	29
3.3	Components of fuzzy logic controller	31
3.4	Interpreting the fuzzy inference diagram	32
3.5	The operation of sugeno's method	34
3.6	Block diagram of fuzzy logic controller	34
3.7	Fuzzy design methodologies	35
3.8	Architecture of adaptive fuzzy controller	37
3.9	Schematic diagram of a neuron	38
3.10	Classification of different neural network structures	40
3.11	Transfer function (a) hard-limit transfer function (b)	41
	linear transfer function (c) log-sigmoid transfer function	
3.12	Artificial Neuron structure	42
3.13	Dynamic Neural Network used as Temporal Processing	53
3.14	context units as memories storing element	54
3.15	Adaptive ANN controllers for Dynamic System	55
3.16	ANFIS Structure	57
4.1	Power System Simulation Model	60
4.2	Block Diagram of lead-lag PSS	61
4.3	Structure of Neuro Fuzzy Inference System	62
4.4	Structure of the study system	67
4.5	Block diagram of ANFIS PSS mode	69

4.6	Neural Network Model of the ANFIS	73
4.7	Structure of Recurrent Neuro Fuzzy Adaptive Controller	77
4.8	Plant identification Scheme	87
5.1	Single line Diagram of Two-Area power System	88
5.2	Speed deviation form four generators	90
5.3	Speed deviation of generator 1	90
5.4	Speed deviation of generator 2	91
5.5	Speed deviation of gnerator 3	91
5.6	Speed deviation generators 4	92
5.7	Speed deviation between generator 2 and generator 1	92
5.8	Speed deviation between generator 3 and generator 1	93
5.9	Speed deviation between generator 4 and generator 1	93
5.10	The Proposed RANFIS PSS and the Exciter	94
5.11	Initial and Final Membership Function	95
5.12	Error Curve	96
5.13	step Size	96
5.14	Error Between plant Identifier and Controller	96
5.15	Initial and Final Membership Function	97
5.16	Error Curve	97
5.17	step Size	97
5.18	Error Between plant Identifier and Controller	98
5.19	Initial and Final Membership Function	98
5.20	Error Curve	99
5.21	step Size	99
5.22	Error Between plant Identifier and Controller	99
5.23	Differences between CPSS and RANFIS with Identifier	101
5.24	Differences between CPSS and RANFIS	101
5.25	Error between input and output	102
5.26	Differences between CPSS and RANFIS with Identifier	102
5.27	Differences between CPSS and RANFIS	103
5.28	Error between input and output	103
5.29	Differences between CPSS and RANFIS with Identifier	104
5.30	Differences between CPSS and RANFIS	104

5.31	Error between input and output	105
5.32	Differences between CPSS and RANFIS with Identifier	105
5.33	Differences between CPSS and RANFIS	106
5.34	Error between input and output	106
5.35	Differences between CPSS and RANFIS with Identifier	107
5.36	Differences between CPSS and RANFIS	107
5.37	Error between input and output	108
5.38	Differences between CPSS and RANFIS with Identifier	108
5.39	Differences between CPSS and RANFIS	109
5.40	Error between input and output	109
5.41	Differences between CPSS and RANFIS with Identifier	110
5.42	Differences between CPSS and RANFIS	110
5.43	Error between input and output	111

LIST OF SYMBOLS AND ABBREVIATIONS

PSS	-	Power System Stabilizer
CPSS	-	Conventional lead-lag power system stabilizer
ANN	-	Artificial Neural Network
BP	-	Backpropagation
LSE	-	Least Square Error
ANFIS	-	Adaptive Neuro-fuzzy Inference System
NFIS	-	Neuro-Fuzzy Inference System
RANFIS	-	Recurrent Adaptive Neuro-fuzzy Inference System
FIS	-	Fuzzy Inference System
MLP	-	Multilayer Perceptron
MSE	-	Mean Square Error
SSE	-	Sum of Square Error
J	-	Total moment of inertia of the rotor masses in kgm
$\theta_{\scriptscriptstyle M}$	-	Angular displacement of the rotor with respect to a stationary
		axis in mechanical radians (rad)
P_{e}	-	Electrical power(w)
p_m	-	Mechanical power(w)
T_a	-	Net accelerating torque in Nm
T_m	-	Mechanical or shaft torque supplied by the prime mover less
		retarding torque due to rotational losses in Nm
T_e	-	Net acceleration or electromagnetic torque in Nm
М	-	Inertia constant of machine (MJ/rad)
δ	-	Potor angle perturbation
Р	-	Active power(w)
ω	-	Rotor speed of synchronous machine (rad/s)
$\Delta \omega$	-	Rotor speed deviation(rad/s)

$\frac{\partial \omega}{\partial t}$	-	Derive of rotor speed
T_{s}	-	Synchronizing torque coefficient
T_D	-	Damping torque coefficient
μ	-	Membership function
y _{ji}	-	The output of the i th nod in the j th layer
<i>W</i> _i	-	Firing strength of Wight
k	-	Step size of learning rate
η	-	Learning rate of backpropagation
β	-	Momentum constant
x	-	Input of NFIS and RANFIS structure
у	-	Entry of training data set
y_d	-	Desired output of RANFIS structure
р	-	Entry of training data set
n	-	Number of node in layer <i>j</i> th
Ε	-	Error signal between target output and learning output
c_i	-	The center of membership function
$\sigma_{_i}$	-	The widths of membership function
z^{-d}	-	Element of delay for d time step
AVR	-	Automatic voltage regulator
APSS	-	Adaptive power system stabilizer
E_q'	-	pu on machine base
E_d'	-	pu on machine base
Ψ_{kd}	-	pu on machine base
ψ_{kq}	-	pu on machine base
<i>i</i> _d	-	d-axis current on system base
i_q	-	q-axis current on system base

IST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Diagram Interconnected Power System	119
В	Generator Model	125
С	Excitation System Model	127
D	Governor Model	128
Е	Power System Stability Model	128

CHAPTER 1

INTRODUCTION

1.1 Background of power system Oscillation

In an interconnected power system, the synchronous generators should rotate at the same speed and power flows over tie-lines should remain constant under normal operating conditions. However, low frequency electromechanical oscillations may occur when a disturbance is applied to the power system. These oscillations can be observed in most power system variables like bus voltage, line current, generator rate and power. Power system oscillations were first observed as soon as synchronous generators were interconnected to provide more generation capacity and more reliability to a power system. Originally, the fairly closely connected generators were observed to swing against each other at frequencies of around 1-2 Hz. Damper windings on the generator's rotor were used to prevent the amplitude of oscillations from increasing. After fast excitation systems were introduced to prevent the generators from loosing synchronism following a system is fault, it was noticed that this kind of excitation system always tends to reduce the damping of the system oscillations [1]. Power System Stabilizers (PSSs), which are the excitation system based damping controllers, were then widely used to add damping torque and increase the damping of these oscillations.

Power system oscillations are generally associated with the dynamics of generators, turbine governors and excitation systems and can be represented by the linear zed swing equation of a synchronous generator around an operating condition as follows:

$$\frac{d}{dt}\Delta\omega_r = \frac{1}{2H} \left(\Delta T_m - \Delta T_e - D\Delta\omega_r\right) \tag{1-1}$$

$$\frac{d}{dt}\Delta\delta = \omega_0 \Delta\omega_r \tag{1-2}$$

Figure 1.1: Line flow transient –August 10, 1996 western USA/Canada system

Where

 $\Delta \omega r$ is the per unit speed deviation of the generator (radians/sec)

 $\Delta\delta$ is the rotor angle deviation (radians)

 ω 0 is the base rotor electrical speed (radians/second)

Tm, Te are the mechanical torque and electrical torque, respectively

H is the inertia of the generator

D is the inherent damping coefficient

The electrical torque can be further represented as [2]

$$\Delta T e = KS(s) \quad \Delta \delta + KD(s) \Delta \omega r \tag{1-3}$$

Where *KS* and *KD* are synchronizing and damping torques, respectively. They are sensitive to generator operating conditions, power system network parameters, and excitation system parameters.

By substituting (1-2) and (1-3) into (1-1), with $\Delta Tm = 0$, we obtain

$$\frac{2H}{\omega_0}\Delta\ddot{\delta} + (D + K_D)\Delta\dot{\delta} + K_S\Delta\delta = 0$$
(1-4)

The characteristic equation for (1-4) is given by

$$S^{2} + \frac{K_{D+}D}{2H}S + \frac{K_{S}\omega_{0}}{2H} = 0$$
(1-5)

For the system to be stable, KD+D and KS have to be positive. If KS is negative, the system will have at least one positive real root and the generator will slip out of synchronism without any oscillation. If KD+D is negative, the system will have at least one root with positive real part. Normally, the effect of AVR in an excitation system with moderate or high response is to introduce a positive synchronizing torque component and a negative damping torque component. Therefore, KS is positive and KD+D could be negative. In the case of KD+D being negative, the system will have complex roots with positive real parts and exhibits oscillations with increasing magnitude. This dissertation explores the controller designs for enhancing the damping of low frequency power oscillations.

1.2 Problems of Conventional Power Control

Today, PSS are widely used on synchronous generators. The most commonly used PSS, referred to as the Conventional PSS (CPSS), is fixed parameter analog –type device. The CPSS first proposed in 1950, is based on the use of a transfer function designed using the classical control theory [2].It contains a phase compensation network for the phase different from the excitation controller input to the damping torque output. By appropriately tuning the phase and gain characteristic of the compensation network, it is possible to set the desired damping ratio. CPSSs are widely used in power systems these days to improve power system dynamic stability. The conventional lead-lag power system stabilizer (CPSS) is widely used by power system utilities. Other types of PSS such as proportional integral power system stabilizer (PI PSS) and proportional integral derivation power system stabilizer (PID PSS) have also been proposed.

The CPSS designed for a particular operation condition around which a linear zed transfer function model is obtained. The high non-linearity, very wide operating condition and unpredictability of perturbations of power system exhibit the following problems to the CPSS:

- The accuracy of linear model for the power system.
- The accuracy of the parameter for that model.
- The effective tuning of the CPSS parameters.
- The interaction between various machines.

However, the CPSS is a linear controller which generally cannot maintain the quality of performance at other operating condition.

1.3 Computational Intelligence Techniques

Recently, many intelligent system techniques have been developed and introduced, such as neural network and fuzzy logic. Artificial neural networks and fuzzy logic system have recently emerged as attractive tools for engineering applications. Fuzzy logic provides a convenient method for constructing nonlinear controllers via the use of expert knowledge [3]. Therefore, the recent direction is to integrate the use of neural network and fuzzy logic system in order to combine their different strengths and overcome each others weaknesses to generate a hybrid solution.

1.4 Thesis Objective and Scope of Work

The objective of this study is listed as follows:

- i. To present an approach for designing intelligent power system stabilizer.
- **ii.** To study and understand the nature of power system stabilizer and the structure of power system generating.
- iii. To design and simulate a power system stabilizer based on recurrent neuro-fuzzy algorithm.
- **iv.** To make a comparison in the performance between controller responses signals of conventional power system and recurrent neuro-fuzzy system.

In this project, the scope of work will be undertaken in the following stages:

- i. Study the power system stability phenomena for a signal generator and interconnected synchronous generators.
- Design and analyze the effectiveness of intelligent PSS using Recurrent Neuro-fuzzy structure (RANFIS) in MATLAB m-file and evaluate it into the proposed power system stabilizer.
- iii. Propose intelligent power system stabilizer that damp the low frequency oscillation.

1.5 Thesis Outline

The thesis is organized as follows:

Chapter 2 describes the basic theory of synchronous generator such as the model and related equations of the relationship between generator and load. it also briefly discusses power system stability and presents some cases of interconnected synchronous generator.

Chapter 3 discusses the basics of intelligent control techniques by Fuzzy logic and neural network. Some mathematical formulations of the control system are also explained in this chapter. Brief explanations about the behavior of Fuzzy logic and Neural Network are also given.

Chapter 4 explains the proposed artificial neural network and fuzzy logic in dynamic system Identification and control. The structure of the adaptive PSS based on recurrent neuro-fuzzy is proposed. The control algorithm of the new PSS is also discussed in this chapter.

Chapter 5 presents the simulation results of the recurrent neuro fuzzy design and discussion on the result produced from the simulation using MATLAB. The structures of recurrent neuro fuzzy are tested in online learning mode. using dynamic plant.

Chapter 6 gives a conclusion of the thesis and recommendations to further improve this research.