
CHAPTER 1

MODIFIED AND HYBRID CONJUGATE GRADIENT METHODS WITH
THEIR CONVERGENCE ANALYSIS: A REVIEW

Abstract
Conjugate Gradient (CG) methods are widely used for solving unconstrained
optimization problems. The paper reviews the development CG methods in recent
times and their convergence properties.

1.1 Introduction

Conjugate Gradient (CG) methods are among the earliest known techniques
for solving large scaled unconstrained optimization problems. The methods
comprise a class of unconstrained optimization algorithms which are characterized
by low memory requirements and strong, local, and global convergence properties
respectively. These properties make them attractive to mathematicians and engineers
for solving large scaled problems (Lu et al., 2015). The work in Hestenes and Stiefel
(1952) presented CG algorithm for solving symmetric, positive-definite linear systems.
CG methods have applications in many fields of endeavours, such as control science,
engineering, management science and operations research. We will consider the
following optimization problem given in (1.1)

min{f(x) : x ∈ Rn} (1.1)

Where f : Rn → R is a continuously differentiable function, bounded from below.
The iterative formula of a CG method is given by (1.2)
x0 ∈ Rn

xk+1 = xk + αkdk, (1.2)
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Where αk is a step length to be computed by a line search procedure and dk is the
search direction defined by (1.3)

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, ... (1.3)

Where gk = ∇f(xk), is a column vector and βk is a scalar called the CG update
parameter. The choice of βk is the major difference among some CG methods such
as Fletcher-Reeve’s(FR), the Hestenes-Stiefel (HS), the Polak-Ribiere-Polyak (PRP),
the Conjugate Descent (CD), the Liu-Storey (LS), and the Dai-Yuan (DY), Dai and
Yuan (2001a); Fletcher and Reeves (1964); Hestenes and Stiefel (1952); Hu and
Storey (1991a); Polak and Ribiere (1969). The construction of algorithm by Fletcher-
Reeves in 1964 is considered the first nonlinear CG method since it is on nonlinear
optimization. Hestenes and Stiefel (1952) presented a CG algorithm for solving
symmetric, positive-definite linear system and Fletcher and Reeves (1964) presented
the CG method for solving nonlinear optimization problems. Let ||.|| denote the
Euclidean norm and define yk = gk+1 − gk, the parameter βk of some CG methods
are given in table 1.1

Table 1.1: The parameter βk
S/N βk Method name References

1

||gk+1||2
||gk||2

Fletcher-Reeves(FR) method Fletcher and Reeves (1964)

2
− ||gk+1||2

dTk gk
Conjugate descent(CD) method Fletcher (1987)

3
− ||gk+1||2

dTk yk
Dai-Yuan(DY) method Dai and Yuan (1999)

4

gTk+1yk

||gk||2
Poyak-Rebiere-polak(PRP) method Polyak (1969)

5
−gTk+1yk

dTk gk
Liu-Storey(LS) method Hu and Storey (1991a,b)

6

gTk+1yk

dTk gk
Hestenes-Stiefel(HS) method Hestenes and Stiefel (1952)

7
(yk − 2dk

||yk||2
dTk yk

) gk+1

dTk yk
Hager and Zhang method Hager and Zhang (2005)

Meanwhile if f is a convex quadratic function, the methods above are equivalent
(Yuan et al., 1999) and αk is calculated by the exact line search, their behaviors for
general objective functions may be far different. It is observed that the numerator of
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parameter βk in table 1.1 is either ||gk+1||2 or gTk+1yk and the denominator is either
||gk||2 or dTk yk or −dTk gk except for the last parameter βk. For non-quadratic cost
functions, each choice for the update parameter leads to different performance. Some
of today’s best performing CG algorithms are hybrid methods which normally obtained
by adjusting βk as the iteration evolve, and a method based on the recent update of
parameter βNk , with close connection to memory-less quasi-Newton methods.

1.2 Line Search

Letf : Rn → Rn be given and suppose that xk is the current best estimate of a
solution to (1.4)

minα≥0f(xk + αdk). (1.4)

A standard method for improving the estimate xk is to choose a direction of search
d ∈ Rn and the compute a step length α∗ ∈ R so that xk + α∗dk approximately
optimizes f along the line x+ αd|α ∈ R. The new estimate for the solution to (1.4) is
then xk+1 = xk + α∗dk. The process of choosing α∗ is called a line search method.

In each CG iteration, the step size αk is chosen to bring to an approximate
minimum for the problem given in(1.4). Since α ≥ 0, the direction dk should satisfy
the descent condition in (1.5) for all k ≥ 0. If there exist a constant c ≥ 0 such that
(1.6) holds, then the search directions satisfy the sufficient descent condition.

gTk dk ≤ 0, (1.5)

gTk dk ≤ −c||gk||2 (1.6)

Generally, for the convergence analysis and implementation of CG methods,
the step size αk is usually obtained by exact line search or inexact line searches.
The inexact line searches which are classified as standard Wolfe condition (Wolfe
conditions), the strong Wolfe conditions or the strong *Wolfe conditions(generalized
Wolfe condition), which are as follows:

1. The Standard Wolfe line search is to find αk such that{
f(xk + αkdk)− f(xk) ≤ δαkg

T
k dk, (1.7)
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{
dTk g(xk + αkdk) ≥ σdTk gk, (1.8)

with 0 < δ < 1
2

and δ < σ < 1

2. The strong Wolfe line search is to find αk such that{
f(xk + αkdk) ≤ f(xk) + δαkg

T
k dk, (1.9)

{
|dTk g(xk + αkdk)| ≤ −σdTk gk, (1.10)

with 0 < δ < 1
2

and δ < σ < 1

3. The strong ∗Wolfe (generalized) line search is to find alphak such that{
f(xk + αkdk) ≤ f(xk) + δαkg

T
k dk, (1.11)

{
σ1d

T
k gk ≤ dTk g(xk + αkdk) ≤ −σ2gTk dk, (1.12)

with 0 < δ < σ1 < 1 and σ2 ≥ 0 and where dk is a descent direction.

Observed that, for all the three Wolfe line searches, the differences are in (1.8),
(1.10) and (1.12). The special case where σ1 = σ2 = σ corresponds to the strong Wolfe
conditions. Usually line search is terminated in a CG algorithm when the standard
Wolfe conditions are satisfied. For some CG algorithms, however, stronger versions of
the Wolfe conditions are needed to ensure convergence. Along the line an approximate
Wolfe conditions was introduced as given in (1.13) and (1.14)

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (1.13)

σgTk dk ≤ gTk+1dk ≤ (2σ − 1)gTk dk, (1.14)

where 0 < δ < 1
2

and δ < σ < 1. The Wolfe condition in (1.14) is same as (1.7)
if f is quadratic. In general, when π(α) = f(xk + αdk) is replaced by a quadratic
interpolant q(.) that matches φ(α) at α = 0 and φ′(α) at α = 0 and α = αk, (1.7)
is same as (1.14). Observed that with special choice for σ2 in (1.12) differs from
approximate Wolfe conditions. The standard, generalized, strong Wolfe conditions or
exact line search are use to prove convergence of CG methods. The approximate Wolfe
conditions are used in efficient, high accuracy implementations of CG algorithms for
which there is no convergence theory, but the practical performance is most at times
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much better. As shown by (Hager and Zhang, 2005), the first Wolfe condition (1.7)
limits the accuracy of a CG algorithm to the order of the square root of the machine
precision, while with the approximation contained in (1.14),the accuracy is achieved
on the order of the machine precision (Hager and Zhang, 2005). As explained further in
(Hager and Zhang, 2006), faster convergence is achieved when using the approximate
Wolfe conditions since a local minimizer of φ satisfied (1.14), while a point satisfying
the standard or Wolfe conditions is obtained by computing a local minimizer of the
approximating function ψ introduced in (Moré and Thuente, 1994) given in (1.15)

ψ(α) = φ(α)− φ(0)− ασφ′(0) (1.15)

. When using the approximate line search, the function f along the search direction dk
is minimized rather than an approximation ψ to f . The approximate Wolfe search
performed better in the computations but the global convergence of the algorithm
cannot be guaranteed in theory. Meanwhile Dai and Kou (2013) proposed a modified
line search called improved Wolfe line search. A positive sequence {ηk} satisfying∑

k≥1 ηk < +∞, given ε > 0 we have (1.16)

f(xk + αkdk) ≤ f(xk) +min

{
ε|gTk dk|, δσkgTk dk + ηk

}
(1.16)

where δ and σ satisfying 0 < δ < σ < 1. Thus, called the line search satisfying (1.16)
and (1.8) the improved Wolfe line search. It argued that (1.16) allows the step-sizes
satisfying (1.7) and therefore is an extension of the standard Wolfe line search. If the
trial point near xk, in which case (1.17),we switch to requiring (1.18)

f(xk + αkdk) ≤ f(xk) + ε|f(xk)|, (1.17)

f(xk + αkdk) ≤ f(xk) + δσkg
T
k dk + ηk (1.18)

instead of (1.8). The term η in (1.18) or (1.16) gives room for a slight increase in the
function value and thereby avoiding the computational drawback of the standard line
search (1.7). Also, the condition that the sequence {ηk} be summable can guarantee
global convergence of the algorithm to standard Wolfe line search.

In convergence analysis, either of the following assumptions on the objective
function f(x) are made
(i) The level set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is bounded, where x0 ∈ Rn is a given
point.
(ii) In a neighbourhood M of Ω, f is continuously differentiable and its gradient g is
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Lipschitz continuous, namely, there exists a constant L > 0 such that we have in (1.19)

||g(x)− g(y)|| ≤ L||x− y||, for all x, y ∈M (1.19)

The global convergence of the CG methods is proved by the following theorem usually
referred to as Zoutendijk condition, the theorem was given by Zoutendijk (1970),
Wolfe (1969, 1971).

Theorem 1 Consider any CG method of the form xk+1 = xk + αkdk where dk
satisfies gTk dk < 0 for k ∈ N+ and αk satisfies the standard Wolfe line search. Then

∞∑
k=0

(gTk dk)
2

||dk||2
< +∞ (1.20)

The Global convergence proofs for CG methods are mostly based on the Zoutendijk
condition combined with analysis showing that:
(a) the sufficient descent condition gTk dk ≤ −c||gk||2 holds and
(b) there exists a constant β such that ||dk||2 ≤ βk. (a), (b), and (1.18) yield

lim inf
k→∞

||gk|| = 0 (1.21)

A related to the Zoutendijk condition, found in Dai et al. (2000), is where the search
directions are descent

Theorem 2 Consider any CG method of the form xk+1 = xk + αkdk where dk
satisfies gTk dk < 0 for k ∈ N+ and αk satisfies the strong Wolfe conditions. If the

Lipschitz assumption holds, then either

lim inf
k→∞

||gk|| = 0 (1.22)

or
∞∑
k=1

||gk||4

||dk||2
<∞ (1.23)

The Wolfe line search and descent search direction conditions are independent of each
other. Therefore, thereis need to satisfy some version of the Wolfe conditions, and
make sure that the new search direction is a descent direction. The descent search
direction condition holds automatically for the CG methods with the choice βDYk ,
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when the line search satisfies the standard Wolfe conditions (Andrei, 2008b; Dai and
Yuan, 1999; Lu et al., 2015). And in the recent CG DESCENT (Babaie-Kafaki and
Ghanbari, 2014; Dai and Kou, 2013; Dai and Yuan, 1999), sufficient descent holds for
xk+1 with c = 7/8 if dTk yk 6= 0.

1.3 The CG Methods with choices of βk

Generally, Lipschitz Assumption is sufficient requirement of the global
convergence of the CG iterative methods that have common numerator ||gk+1||2 in
theory such as the FR, DY and CD methods while PRP, LS, HS, among others requires
both Lipschitz and Boundedness Assumption. The global convergence result given by
Zoutendijk (1970) proved that FR method converges globally with exact line search.
On the contrary Powell (1977) investigated that FR method with exact line search can
cycle infinitely without making significant progress to the solution. The first global
convergence analysis of the FR method with inexact line search was given by Al-Baali
(1985). He also proved that FR method generates descent directions under the strong
Wolfe conditions with σ < 1

2
under strong Wolfe condition. With that, he proved that

in (1.24)
1− 2σ + σk+1

1− σ
≤ −g

T
k dk

||gk||2
≤ 1− σk+1

1− σ
, (1.24)

for all k ≥ 0. Dai and Yuan (1999) showed that the CD method always produces a
descent direction if the strong Wolfe conditions are satisfied. The global convergence
of CD method was proved under strong Wolfe line search with a strong restriction on
the parameters. Notice that, with exact line search βFRk = βCDk . The major difference
that exists between FR and CD is that for CD, sufficient descent (1.6) holds for strong
Wolfe line search. The CD method does not need σ which was identified with FR.
Furthermore, if a line search satisfies the generalized (strong ∗Wolfe) condition (1.12)
with σ1 < 1 and σ2 = 0, then 0 ≤ βCDk ≤ βFRk follows and by Al-Baali (1985),
global convergence is obtained. On the contrary, if σ ≥ 1 or σ > 0 Dai and Yuan
(1996) showed that ||dk||2 increase exponentially through example given and the CD
method converges to a point where the gradient does not vanish. Generally, DY method
always generates descent direction with the standard Wolfe line search and it is globally
convergent with the Lipschitz Assumption. This method first came in to being in Dai
and Yuan (1999). Dai (2001) investigated the DY method further and established some
remarkable properties, relating the descent directions of DY method to the sufficient
descent condition:
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Theorem 3 Consider any CG method of the form xk+1 = xk + αkdk with dk+1 =

−gk+1 + βkdk, d0 = −go, where βk = βDYk . If the DY method is implemented with

any line search for which the search directions are descent directions, and if there exist

constants γ1 and γ2 such that γ1 ≤ ||gk|| ≤ γ2 for all k ≥ 0, then for any

p ∈ (0, 1), there exists a constant c > 0 such that the sufficient descent given by (1.25)

gTi di ≤ −c||gi||2 (1.25)

holds for all at least [pk] indices i ∈ [0, k], where [j] denotes the largest integer ≤ j.

Furthermore, Dai and Yuan established a convergence result applicable to any CG
method where βk can be expressed as in (1.26). Taking Φk = ||gk||2 and Φk+1 =

||gk+1|| yield βk choice for FR method. From (1.3), we have (1.27).For exact line
search dTk gk+1 = 0 and hence βDYk can be expressed as (1.28). The parameter βDYk of
DY method correspond to (1.26) with Φ = gTk dk. The relation (1.26) play a key role in
the convergence analysis of DY method.

βk =
Φk+1

Φk

. (1.26)

dTk+1gk+1 = −gTk+1gk+1 + βkd
T
k gk+1 (1.27)

βDYk =
gTk+1dk+1

gTk dk
. (1.28)

In conclusion, all CG methods with ||gk+1||2 in the numerator of βk, that is;
FR, CD and DY methods have strong global convergence properties (Al-Baali, 1985;
Bai, 2001; Dai et al., 2000; Dai, 2001; Guanghui et al., 1995; Hu and Storey, 1991b).
In practical computations, the nonlinear CG methods with ||gk+1||2 in the numerator,
though may have strong convergence but they may take infinitely small steps without
approaching the solution. In that regards, methods such as PRP, HS and LS perform
similarly theoretically and are preferred to the methods with ||gk+1||2 in the numerator.
The PRP, HS and LS are methods with gTk+1yk and they possess a built-in restart feature
thereby addressing jamming problem of the earlier. The factor yk = gk+1 − gk in the
numerator of βk tends to zero when the step xk+1 − xk becomes small thereby making
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βk small and the new search direction dk+1 becomes approximately steepest descent
direction −gk+1.

Polak and Ribiere (1969) proved the global convergence of the PRP method
with exact line search using the assumption that f is strongly convex. As a
consequence, Powell (1986) constructed a counter example which could not converge
to a minimum using exact line search in the case of PRP and HS. Hence, the step
size tends to zero, assumption required for convergence. The work of Powell (1986)
motivated Gilbert and Nocedal (1992) to conduct an interesting analysis showing that
PRP method converge globally if βPRPk is restricted to be non-negative and step size
αk is determined by a line-search step satisfying the sufcient descent condition gTk dk ≤
−c||gk||2 together with the standard Wolfe conditions. However, with the generalized
line search condition (Grippo and Lucidi, 1997) proved that the PRP method is globally
convergent for non-convex minimization. Also, Dai (1997) constructed an example
showing that even when the objective function is strongly convex and σ ∈ (0, 1), the
PRP method may still not converge with strong line search condition. From the work
of Powell (1984), the modified update parameter for the PRP method was given in
(1.29)

βPRP+
k = max{βPRPk , 0}, (1.29)

and its convergence was proved to curtail the convergence failure of PRP method
with the Wolfe method (Gilbert and Nocedal, 1992). In order solve the problem of
convergence failure of the method is to keep update parameter formula of PRP but
modified the line search, where Grippo and Lucidi (1997) proposed a new Armijo type
line search condition given by (1.30), where j ≥ 0 is the smallest integer with the
property in (1.31) and (1.32)

αk = max{λj τ |g
T
k dk|
||dk||2

}, (1.30)

f(xk+1) ≤ f(xk)− σα2
k||dk||2, (1.31)

−σ1||gk+1||2 ≤ gTk+1dk+1 ≤ −σ2||gk+1||2 (1.32)

where 0 < σ2 < 1 < σ1, 0 < λ < 1 and τ > 0 are constants. The global
convergence of PRP was achieved with the new line search condition. Dai et al. (2000)
investigated global convergence with the line search take the step size α = η < 1

4L
,

where L is a Lipschitz constant for ∇f . In the same vain Sun and Zhang (2001)

gave αk = −δ gTk dk
dTkQkdk

, where Qk is some positive definite matrix with eigenvalue

vmin > 0, δ ∈ (0, vmin|L), and L is a Lipschitz constant for ∇f In the case of HS
method, the conjugacy condition dTk+1yk = 0 holds, irrespective of the line search and
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βHSk = βPRPk with the exact line search.

Moreover, the two methods should have similarity in the convergence analysis.
From the literature, the global convergence of the original HS and LS methods has not
been proved under the mentioned line searches. Though, Shi and Shen (2007) proposed
a new form of Armijo-type line search that guaranteed the global convergence of the
LS method with the assumption of Lipschitz continuous partial derivatives. It needs to
estimate the local Lipschitz constant of the derivative of objective functions in practical
computation. The global convergence and linear convergence rate of the LS method
with the new Armijo-type line search were analyzed under some mild conditions.
While proving the global convergence of LS method using the new Armijo type line
search, angle property was used in (1.33)

cos(−gk, dk) = − gTk dk
||gk||.||dk||

≥ τ (1.33)

where 1 ≤ τ > 0 The Armijo line search was given as: Let s > 0 be a constant,
ρ ∈ (0, 1) and µ ∈ (0, 1). Choose αk to be the largest α in {s, sρ, sρ2, · · · } such that
(1.34)

fk − f(xk + αdk) ≥ −αµgTk dk (1.34)

1.4 The Modified CG Methods

It has been shown through different researches that strong global convergence
of FR, DY and CD methods are established. That is, the methods have strong
global convergence but their computational performance is not so well in practice
due to jamming phenomenon (Al-Baali, 1985; Dai, 2001; Dai and Yuan, 1999). On
the other hand, HS, PRP and LS methods may not always converge but they often
perform better, computational wise (Andrei, 2008b; Dai and Yuan, 1996). In order
to take advantage of the features of the two categorizes of the CG methods which
are strong global convergence and promising numerical computations, researchers
proposed modification of some methods based on the βk choice, hybridization of
two families of the methods and descent direction adjustment. Liu and Feng (2011)
suggested a modification of LS method given in (1.35)

βMLS
k =

gTk (gk − tkgk−1)
u|dTk−1gk| − dTk−1gk−1

, (1.35)
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where tk =
||gk||
||gk−1||

, u > 0. The numerical experiment showed that the modified

method is efficient under the Grippo-Lucidi line search. Another Modified method
proposed by Zhang et al. (2012) was based on PRP method in (1.36), where µ1 ∈
(0,+∞), µ2 ∈ (2µ1,+∞), µ3 ∈ [ε,+∞) and epsilon is positive constant. This
algorithm was implemented without line search and the global convergence was
established with the strong Wolfe condition in (1.9) and (1.10) where δ ∈ (0, 1), σ ∈
(δ, 1).

βMPRP
k =

µ1(||gk||2 −
|gTk gk−1|
||gk+1||2

gTk gk−1)

µ2|gTk dk−1|+ µ3||gk−1||2
(1.36)

Meanwhile, MPRP method converges globally for the general non-convex
unconstrained optimization but the original PRP method with exact line may not. In
the same manner the works of Dai and Wen (2012); Yuhong (2002) motivated Jiang
and Jian (2013) to proposed another modified CG method called MDY whose intention
was to improve the numerical performance that has a better property of the DY method
and retain its good properties and structure. The modification was to the denominator
of the original DY method in order to have the sufficient descent condition and also
other properties for efficient conjugate gradient. The modified βk given by (1.37),
where µ > 1. Also, by extension to FR method in the same paper, formula for βk was
proposed in (1.38)

βMDY
k =

||gk||2

max{dTk yk, µ|gTk+1dk|}
(1.37)

βMFR
k =

||gk+1||2

max{||gk||2, µ|gTk+1dk|}
(1.38)

where µ > 1 and the relations 0 < βMFR
k ≤ βFRk always hold while the MFR

reduces to FR if the line search is exact. The MDY method possess all the properties
of DY method and MFR method and generate sufficient descent direction at every
iteration without any line search and the method converge globally with standard Wolfe
condition. With the emphasis on the objective function, Iiduka and Narushima (2012)
presented two new nonlinear conjugate gradient methods that have new denominators
for solving the unconstrained optimization problems. These methods focus on the
objective function. After the modification of these methods (1.39) and (1.40) by Iiduka
and Narushima (2012), it was found that the method in (1.40) is as efficient as or even
more efficient than the conventional methods such as PRP+ and HZ methods that were
put in to consideration. The methods are globally convergence under Wolfe condition.
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The choices of βk are in (1.39) and (1.40)

βModify1
k =

{
||gk+1||2

max{dTk yk, γk+1}

}
(1.39)

and

βmodify2k = max

{
0,
gTk yk
γk+1

}
, (1.40)

where
γk+1 =

1

2
(f(xk)− f(xk+1)). (1.41)

Based on the modified secant equation, a modified Hestenes-Stiefel (HS) conjugate
gradient method was proposed which has similar form as the CG-DESCENT method
proposed by Hager and Zhang (2005), specified the parameter by (1.42) and (1.43)

βNHSk =
gTk yk−1
dTK−1zk−1

− µ ||yk−1||
2

(dTk−1z
)
k−12

gTk dk−1, (1.42)

where

zk−1 = yk−1 + tk−1sk−1, tk−1 = ε0 +max

{
−
sTk−1yk−1

sTk−sk−1
, 0

}
(1.43)

ε0 ∈ [0, c], µ >
1

4
.

The proposed method can generate sufficient descent directions without any line search
and the global convergence of the method was proved using Armijo line search. Lastly,
the method has robust computational performance as compared to CG-DESCENT
method. Under the assumption that the line search is exact, Rivaie et al. (2014)
proposed a new parameter βk called the βRAMI

k which is defined by (1.44)

βRAMI
k =

gTk+1

(
gk+1 − ||gk+1||

||gk||
gk

)
dTk (dk − gk+1)

. (1.44)

The convergence analysis was established and numerical experiment showed that the
method is robust as compared to FR and PRP since it solved all the problems under
consideration. Like others Liu and Wang (2011) gave another version of modified
conjugate gradient method with sufficient descent condition been satisfied under the
strong ∗Wolfe (generalized) line search. The βk+1 been computed by (1.45)

βV LSk+1 = max

{
βLSk+1 − u

||yk||2

(gTk dk)
2
.gTk+1dk, 0

}
, (1.45)

where
(
u > 1

4

)
. The global convergence of the algorithm were obtained under some
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condition. While numerical report showed that the overall performance of the VLS
method was better than DSP-CG, PRP and CG-DESCENT methods.

Furthermore, three new hybrid nonlinear gradients were proposed by Zhou
et al. (2011). These methods were implemented without any line searches and
they produce sufficient descent search direction at every iteration. Also, the global
convergences of these methods were analyzed under some conditions. These methods
namely, H3, MCD and NH3 defined by (1.46), (1.47) and (1.48) respectively.

H3 : βH3
k = max

{
0,min{βLSk , βCDk }

}
(1.46)

MCD : dk = −gk + βCDk dk−1 +
gTk dk−1
dTk−1gk−1

gk

= −
(

1 + βCDk
gTk dk−1
||gk||2

)
gk + βCDk dk−1 (1.47)

NH3 : dk = −
(

1 + βH3
k

gTk dk−1
||gk||2

)
gk + βH3

k dk−1. (1.48)

Obviously, from MCD and NH3 methods, it can easily be seen that they satisfy
gTk dk = −||gk||2 and it implies that the descent condition hold. The computational
results reported showed that all three methods are promising under the problems under
consideration. Babaie-Kafaki and Ghanbari (2014) were motivated by computational
efficiency and theoretical effectiveness of the a three-term conjugate gradient method
by Zhang et al. (2007) to propose a three-term version of the nonlinear conjugate
method suggested by H. Dai and Z. Liao (2001a). The search direction given by (1.49)

d0 = −g0, dk+1 = −gk+1 + βHSk dk − t
gT+1sk
|dTk yk|

dk −
gTk+1dk

dTk yk
yk, k ≥ 0 (1.49)

where t is a non-negative parameter. If the exact line search is used, then the method
reduces to the HS method, and if t = 0, then the method reduces to the ZZL method
inHager and Zhang (2004). The three-term conjugate gradient method can be regarded
as a modified variant of the three-term conjugate gradient method suggested by Sugiki
et al. (2012). The global convergence of the method was analyzed for uniformly
convex functions. And lastly by Sugiki et al. (2012), another three-term conjugate
gradient was proposed in order to establish the global convergence independent of
convexity assumption on the objective function. The suggested method is a modified
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ZZ method called MZZ, with the following search directions given in (1.50)

d0 = −g0, dk+1 = −gk+1 + βZZk dk −
gT+1dk
|dTk zk|

zk, k ≥ 0 (1.50)

Meanwhile if the exact line search is used, then the method reduces to the ZZ method.
The MZZ method can be regarded as a modified version in Sugiki et al. (2012).

The summary of some modified CG methods with special preference to the
parameter βk are given in table 1.2

Table 1.2: The parameter βk

Line search Method βk Reference

Grippo-Lucidi
βMLS
k

gTk (gk − tkgk−1)
u|dTk−1gk| − dTk−1gk−1

Liu and Feng (2011)

Strong Wolfe
βMPRP
k

µ1(||gk||2 −
|gTk gk−1|
||gk+1||2

gTk gk−1)

µ2|gTk dk−1|+ µ3||gk−1||2
Zhang et al. (2012)

Wolfe condition
βMDY
k

||gk||2

max{dTk yk, µ|gTk+1dk|}
Jiang and Jian (2013)

Wolfe condition
βMFR
k

||gk+1||2

max{||gk||2, µ|gTk+1dk|}
Jiang and Jian (2013)

Wolfe condition
βModify1
k

{
||gk+1||2

max{dTk yk, γk+1}

}
Iiduka and Narushima (2012)

Wolfe condition
βmodify2k max

{
0,
gTk yk
γk+1

}
Iiduka and Narushima (2012)

Exact
βRAMI
k

gTk+1

(
gk+1−

||gk+1||
||gk||

gk

)
dTk (dk−gk+1)

Rivaie et al. (2014)

strong Wolfe
βV LSk+1 max

{
βLSk+1 − u

||yk||2
(gTk dk)

2 .g
T
k+1dk, 0

}
Liu and Wang (2011)

1.5 The Hybrid CG Methods

In the process of obtaining more robust and efficient conjugate gradient
methods, some researchers suggested the hybrid conjugate gradient algorithms which
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combined the good features of the methods involve in the hybridization. The first
hybrid conjugate gradient method was given by Touati-Ahmed and Storey (1990) and
the reason behind the proposal was to avoid jamming phenomenon. In this direction
Li and Sun (2010) proposed a new hybrid conjugate gradient method for solving
unconstrained optimization problems. The researchers were motivated by the works
of (Andrei, 2008a, 2009; Dai and Yuan, 2001a; Zhang and Zhou, 2008) and their
parameter βk is computed as a convex combination of βFRk and β∗k algorithms, i.e.
βNk = (1 − θ)βFRk + θkβ

∗
k . The Wolfe line search was employed to determine the

step length αk > 0 and the new method proved to be more robust numerical wise
as compared to FR and WYL methods. The global convergence was established
under some suitable conditions. Furthermore, Yang et al. (2013) proposed a global
convergence of LS-CD hybrid conjugate gradient method. The Wolfe type line search
was use for convergence analysis of the method where parameter βk is computed by
(1.51)

βLS−CDk = max

{
0,min(βLSk , βCDk )

}
. (1.51)

The experimentation showed that the hybrid method outperformed the LS and CD
methods respectively. Babaie-Kafaki (2013) proposed a hybrid conjugate gradient
method which uses a quadratic relaxation of hybrid CG parameter by Dai and Yuan.
This method uses the attractive features of the Hesteness-Stiefel and Dai-Yuan while
the parameter in the proposed method was obtained based on conjugacy condition
that is independent of line search (Dai and Yuan, 2001a). The global convergence
of the proposed method was established under some conditions for uniformly convex
functions. The numerical experiment of this method showed efficiency especially in
CPU times compared to the hybrid method in Dai and Yuan (2001a). Meanwhile,
the works of Gilbert and Nocedal (1992) and Dai and Yuan (2001b) inspired (Kaelo,
2015) to suggest new hybrid method called another hybrid conjugate gradient method
for unconstrained optimization problems from which parameter is given in (1.52) with
c = 1−γ

1+γ
, γ ∈ [1

2
, 1] and the direction dk defined by (1.53)

β∗k = max

{
min{−cβPRPk , βFRk },min{βFRk , βPRPk }

}
, (1.52)

dk = −gk for k = 0, dk = −θk + β∗kdk−1 k ≥ 1 (1.53)

where θk = 1 + β∗k
dTk−1gk

||gk||2
. The parameter θk defined makes the direction satisfy the

descent condition without line search. The numerical results of the proposed method
proved to be competitive with of Gilbert and Nocedal (1992), Dai and Yuan (2001a),
and Touati-Ahmed and Storey (1990).
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Furthermore, H. Dai and Z. Liao (2001b) proposed a new conjugacy condition
based on Quasi- Newton techniques given by (1.54)

βDL1k = βHSk − t gTk sk−1
dTk−1(gk − gk−1)

, (1.54)

where t ≥ 0. Note that if the exact line search is employed for the method with βDL1k

implies the convergence is obtained since it has the same properties with FR method.
Therefore, Dai and Liao uses (1.55)

βDLk = max{βHSk , 0} − t gTk sk−1
dTk−1(gk − gk−1)

. (1.55)

The (1.55) motivated Yao and Qin (2014) to generate the parameter βk by (1.56)

βWY LDL
k = βWY L

k − t gTk sk−1
dTk−1(gk − gk−1)

(1.56)

which can be regarded as modification of βWY L
k by adding −t gTk sk−1

dTk−1(gk−gk−1)
and also

a modification of βDLK by replacing max{βHSk , 0} by βWY L
k . Based on the tested

problems, the proposed method has overall robust performance.

The researches carried out by Dai and Yuan (2001a); Jiang et al. (2012);
Yuhong (2002) coupled with numerical performance of research carried by Shengwei
et al. (2007); Wei et al. (2006) served as insight to Jian et al. (2015)to proposed a
hybrid method named a hybrid conjugate gradient method with decency property for
unconstrained optimization , where the parameter βk is given by (1.57)

βNk =

||gk||2 −max
{

0, ||gk||||gk−1||
gTk gk−1

}
max

{
||gk−1||2, dTk−1(gk − gk−1)

} . (1.57)

The global convergence of the method was established under Wolfe line search.
Medium-scale numerical experiments showed that the proposed method is efficient.
It is obvious that βNk = βDYk or βFRk or βYWH

k . Thus, βNk is one of the hybrids of
βDYk , βFRk , and βYWH

k which make the method to have a good property whose search
directions are always descent under any step length line search technique. Andrei
(2008b) proposed and analyzed another hybrid conjugate gradient algorithm in which
the parameter βk is computed as a convex combination of βHSk Hestenes and Stiefel
(1952) and βDYk Dai and Yuan (2001a), the computation of θk is such that Newton
direction and secant equation are satisfied. Standard Wolfe line searches line was used
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in the algorithm. The work of Andrei (2008b) served as the bases for Liu and Li (2014)
who proposed new hybrid conjugate gradient method for unconstrained optimization
which can be regarded as a convex combination of LS and DY methods and it satisfies
Newton direction with suitable condition. Using weaker condition in (1.58), the convex
combination of LS and Dy is given by (1.59).From (1.58) and (1.59) we have (1.60)
and making γk subject of the formula to have (1.61)

dTk+1yk = −tsTk gk+1, t ≥ 0 (1.58)

,
dk+1 = −gk+1 + (1− γk)βLSk dk + γkβ

DY
k dk (1.59)

−tsTk gk+1 = −gTk+1yk + (1− γk)βLSk dTk yk + γkβ
DY
k dTk yk (1.60)

γDLk =
gTk+1yk.d

T
k gk+1 − t.sTk gk+1.d

T
k gk

||gk+1||2.dTk gk + gTk+1yk.d
T
k yk

. (1.61)

Under the strong Wolfe line searches, the global convergence of the proposed
method was established and Preliminary numerical results also showed that their
method is effective. Furthermore, in order to harmonize the strong features of HS
and DY methods, Babaie-Kafaki (2013) gave a hybridization of the two methods using
quadratic relaxation of a hybrid CG parameter proposed by Dai and Yuan. Note that
from the work Dai and Yuan (2001b), we have (1.62).With βk = βhDYk defined by
(1.62), the three possible choices of parameter are given by (1.63)

βhDYk = max{−cβDYk ,min{βHSk , βDYk }}. (1.62)

{−cβDYk , βHSk , βDYk }. (1.63)

In other words, in βhDYk a discrete combination of the elements by (1.63) has
been considered. Based on (1.63), Babaie-Kafaki (2013) hybridized the elements
continuously using a quadratic interpolation given in (1.64),where γk is a scalar called
the hybridization parameter and c is defined by (1.65) Obviously we can easily deduced
(1.66) through (1.68)

βk(γk) = (1− γ2k)βHSk +
γk
2

[
(1 + c)βDYk + γk(1− c)βDYk

]
, (1.64)

c =
1− σ
1 + σ

. (1.65)

βk(−1) = −cβDYk (1.66)

βk(0) = βHSk (1.67)
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βk(1) = βDYk . (1.68)

The parameter βk computed was based on a conjugacy condition and the
convergence was analyzed for uniformly convex functions under strong Wolfe line
search. The numerical experiment showed the capability in the sense of the
performance profile introduced by Dolan and Moré (2002). On the basis of achieving
theoretical effectiveness and numerical efficiency for solving large scale unconstrained
optimization problems, Babaie-Kafaki and Ghanbari (2015) proposed a hybridization
of PRP and FR. The computation of parameter βk is such that search directions
approaches to the search directions of the efficient three-term conjugate gradient
method proposed by Zhang et al. (2007) under some suitable conditions. The
parameter βk is computed by (1.69)

βHCGk = (1− γk)βPRPk + γkβ
FR
k , (1.69)

where γk ∈ [0, 1] is the hybridization parameter. Observe that if γk = 0, then we have
βHCGk = βPRPk , and if γk = 1, then we have βHCGk = βFRk and the search directions of
a CG method with the parameter (1.69) is given by (1.70)

dHCG0 = −g0, dHCGk+1 = −gk+1 + βPRPk dk + γk
gTk+1gk

||gk||2
dk, for all k ≥ 0.

(1.70)
The choice for γk can obtain by solving the following least-squares problem:

min
γk
||dHCGk+1 − dZZLk+1 ||2.

Meanwhile global convergence of the method is established without convexity
assumption on the objective function under strong Wolfe condition. The numerical
computations were compared with the three-term conjugate gradient method proposed
by Zhang et al. (2007)Zhang et al. (2007) and a modified version of PRP proposed by
Gilbert and Nocedal (1992) and proved efficient.

The summary of some hybrid CG methods with special attention to the
parameter βk are given in table 1.3
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Table 1.3: The parameter βk

Line search Method βk Reference

Wolfe condition
βLS−CDk max

{
0,min(βLSk , βCDk )

}
Yang et al. (2013)

nil
β∗k max

{
min{−cβPRPk , βFRk },min{βFRk , βPRPk }

}
(Kaelo, 2015)

Wolfe condition
βWY LDL
k βWY L

k − t gTk sk−1

dTk−1(gk−gk−1)
Yao and Qin (2014)

Wolfe condition
βNk

||gk||2−max

{
0,
||gk||
||gk−1||

gTk gk−1

}
max

{
||gk−1||2,dTk−1(gk−gk−1)

} Jian et al. (2015)

Strong Wolfe
βLSDYk (1− γk)βLSk dk + γkβ

DY
k Iiduka and Narushima (2012)

Strong Wolfe
βk(γk) (1− γ2k)βHSk + γk

2

[
(1 + c)βDYk + γk(1− c)βDYk

]
Babaie-Kafaki (2013)

Exact
βHCGk (1− γk)βPRPk + γkβ

FR
k citebabaie2015hybridization

Strong Wolfe
βH3
k max

{
0,min{βLSk , βCDk }

}
Zhou et al. (2011)

1.6 Conclusion

The pioneer set of algorithms of conjugate gradient methods were designed
to solve symmetric, positive-definite linear systems of equation. Since then, the
area has been of great interest of research. Over six decades considerable research
efforts has been diverted to the area. After the pioneer set of algorithms, efforts were
extended to solving nonlinear unconstrained optimization problems which resulted to
different versions of algorithms. Though the state of the art methods were faced with
jamming phenomenon or convergence failure. Some of the basic CG methods that
are effective theoretically are computationally not strong.Such methods are FR, CD
and DY methods while the others that have powerful numerical capabilities may not
always be convergent, such as HS, PRP and LS methods. The challenges of these state
of art methods CG methods prompted the researchers to modify the existing methods
using different versions of line searches and established their convergence under some
suitable conditions. Hybridization schemes takes advantage of two or more methods,
leading to a better performance in practice as well as ensuring global convergence
under some specific conditions.
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