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Abstract: Filled function method is an optimization method for finding global 

minimizers. Filled function method is a combination of a local search in findings local 

solutions as well as global solution. It is basically a construction and eventually the inclusion 

of an auxiliary function called the filled function into the algorithm. Optimizing the objective 

function at an initial point will only yield a local minimizer. By using the auxiliary function, 

the local minimizer is shifted to a new lower basin of the objective function. The shifted 

point is the new initial solution for the local search to find the next local minimizer, where 

the function value is lower. The process continued until the global minimizer is achieved. 

This research used several test functions to examine the effectiveness of the method in 

finding global solution. The results show that this method works successfully and further 

research directions are discussed. 
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Introduction 
 
The field of optimization has grown rapidly during the past few decades. Many new 

theoretical, algorithmic, and computational contributions of optimization have been proposed 

to solve various problems in many areas. Recent developments of optimization methods can 

be mainly divided into deterministic and heuristic approaches. Deterministic approaches take 

advantage of the analytical properties of the problem to generate a sequence of points that 

converge to a global optimal solution. Heuristic approaches have been found to be more 

flexible and efficient than deterministic approaches; however, the quality of the obtained 

solution cannot be guaranteed. Moreover, the probability of finding the global solution 

decreases when the problem size increases. Deterministic approaches (e.g., linear 

programming, nonlinear programming, and mixed-integer nonlinear programming, etc.) can 

provide general tools for solving optimization problems to obtain a global or an 

approximately global optimum. With the increasing reliance on modeling optimization 

problems in real applications, a number of deterministic methods for optimization problems 

have been presented. The study focuses on analyzing the recent advances in deterministic 

optimization approaches (Lin, Tsai and Yu, 2012). 
 
 Optimization has attracted a great deal of attention from the research community 

since many problems arising in many different fields can be posed and solved through 

mathematical programming techniques. Interest in optimization intensified in the middle of 

20th centuries with the linear programming model which was simple, practical, and perhaps 

the only solvable model using the computing power available at the time.  

 

 With the tremendous advances in computing technology nowadays, the situation is 

changing rapidly. It has been realized that the assumption of linearity is restrictive in 

modeling a variety of applications (Pardalos and Romeijin, 2002). As a result, researchers 

seek efficient methods to solve nonlinear programming problems. Initial attempts 

concentrated on developing local optimization methods, guaranteeing globality under the 

assumption of convexity. However, many optimization problems of practical relevance are 

not convex and exhibit multiple local optima, thus demanding the use of global optimization 

techniques for their solution. 
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Literature Review 
 
In this section, we focus on one FFM that is widely used and become the reference to many 

researchers that is �-function, introduced by Renpu Ge in 1990.  

��
, �, ½) 	= 	1/0� + C(
)5	l
2 T� ‖�&�8∗‖9�9 W.    (1)  

 

It was originally put forward by RenpuGe as an effective algorithm of finding global 

minimizer of a multi-modal function.  

 

 During the year, the theory is raised mainly to cope with unconstrained optimization 

problems. The rudimental notion of filled function method is: when a local minimizer is 

reached, it is hoped that "escaping" this local minimizer is possible. Furthermore, keep 

searching, and a better local minimizer is reached. By constructing an auxiliary function, a 

local minimizer is shifted into a local maximizer. We make the point perturbed 

deterministically, and then, take this perturbed point as the initial point to search, and try to 

find the auxiliary function’s local minimizer which is a better local minimizer of the 

objective function, or at least as well as the original one (Fang, 2006). 

 

 Fang stated that Ge’ FFM is a two-phase iterative: the minimizer phase and the 

filling phase. In the first phase, we can use classic minimizer method, such as quasi-Newton 

method, the method of steepest descent, etc. to search for a local minimizer 
�∗ in objective 

function. During the second phase, we take the present minimizer as the basic to define a 

filled function, and using it to find 
′. Then we take 
′ as the starting point and repeat the 

first phase. This occurs again and again until the best local minimizer could not be found. 

The filled function method fully grasps the present local information, for it only applies the 

mature local minimizer method, it is greatly popular with the theoretical and practical 

operators. 

 

 

Methodology
 

 

An optimization based methods which provide a mechanism to find global solution to the 

objective function. A local search is used as a tool to minimize the objective function as well 

as the auxiliary function in order to find local minimizer and new initial point respectively. 

Which we are already discussed in the literature review. This method provide a ‘jump’ from 

one local solution to another local solution until better local called global solution achieved. 

  

 This research is concerned with the problem of finding a global minimizer of a twice 

continuously differentiable function C�
�on ℝ%. Suppose C�
) satisfies the condition  C�
�⟶ �∞	as	‖
‖ → +∞     (2) 

 

Then there exists a closed bounded domain Ω ⊂ ℝ% whose interior contains all global 

minimizers of C(
). We assume that Ω is known and our methods only consider points in	Ω. 

We also assume that C(
)has only a finite number of minimizers in Ω and therefore, every 

minimizer is an isolated minimizer. 

 

1. Filled Function Method Procedure 
 

In general, the application of the algorithm of filled function methods is as the following 

phases: 
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Phase 1: Finding the local minimizer 

 We need to find a local minimizer 
7∗  starting from an initial point and use any local 

minimization method such as Newton method.  

 

 

Phase 2: Finding a new solution in a lower basin 

 After the local minimum 
7∗  in the Phase 1 is obtained, then the filled function is 

constructed at that point and minimize the filled function in order to identify a point 


7#�with C(
7#�) 	 C(
7∗). If 
7#� is formed, 
7#� is certainly in a lower basin than ô7∗ .Use 
7#� as an initial point in Phase 1 again. 

 

 
 

Figure 1: Procedure flow of the algorithm of filled function method 

 

Start
Identify 

problem, C(
)
Minimize C(
) starting 
from 
_0 in Ω to find 
minimizer 〖
1〗_^∗
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1〗_^∗ to construct 
filled function, �(
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End
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Increase both ½! and � �C(
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 0 make the ratio  ½!/(� � C(
�∗)) 
 0 smaller 

than the previous one 
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Figure 1 shows the flow chart on the procedure flow that we are concerning in this 

research study. The basic idea from Ge (1990) is as follows. At the beginning one may use 

any local minimization method. For instance, fminsearch function (Built is used to find a 

minimizer 
�∗ of C�
�in the domain Ω. Then one attempts to find another minimizer of C�
�, 
!∗say, which satisfies the inequality C�
!∗� 	≤ 	C�
�∗�.        (3) 

 

The idea of finding 
!∗ from 
�∗ is to fill the basin of C�
�at 
�∗ and other higher 

basins of C�
� than ô�∗ so that 
�∗ is a maximizer of the filled function and the basin ô�∗ is a 

part of a hill of the filled function. Furthermore, the filled function has no minimizers or 

saddle points in higher basins of C�
�then ô�∗, but it does have a "minimizer" along the 

direction 
 � 
�∗ in a lower basin of F(x) than ô�∗ if one exists. Thus, one can use an initial 

point near 
�∗ to minimize the filled function. The minimization sequence �
7�leads away 

from 
�∗ and tends to a point 
′ which is in a lower basin ô!∗of C�
�. Using x' as an initial 

point to minimize F(x), one can obtain a lower minimizer 
!∗of  C�
�, and so on. 

 

 
Results and Discussion 
 
 In this section, the algorithm is tested on some optimization problems. 

 

 

(a) C�
� � �2 sin! 
 − sin 
 − 2√
 

 s.t	0 ≤ 
 ≤ 6 
 

 Table 1: Results of minimizing �-function at 
�∗. 

i 
�∗ C�
�∗� lM 
̅ 
′ 
1 4.8665 -5.3768 3 6.9878 7.2235 

2 
  

-3 2.8866 1.9638 

 

 From the result tabulated in Table 4.1, the first iteration of minimizing the �-

function, the algorithm took the first preset direction, l� give 
( � 7.2235 from the first 

local minimizer 
�∗ � 4.8665. This value, 
( is outside of the Ω, so this value is rejected and 

continue the algorithm with the next preset direction, l!. Eventually, the algorithm arrived at 
( = 1.9638 which in the Ω and then, take it as an initial point to minimize C(
), get local 

minimizer 
!∗ � 1.7251 and the function value C(
!∗� � �5.5677. Compare the value of C(
!∗� with C�
�∗�. In this case, C�
!∗� < C�
�∗�infact C�
!∗� ≈ C�
∗�, hence the method 

arrives at the global minimizer. 

 

 From this test, we can see clearly the flow of the algorithm form Phase 1 

(minimizing the objective function) to Phase 2 (minimizing the �-function). The process 

repeat until the global minimizer found. Thus, the initial testing for the algorithm is quite 

successful. Next, the algorithm is tested with higher number of local minima problem.  

 

 

(b) C�
� � sin 
 � sin 2
 − cos 4
 

 

 s. t − 2 ≤ 
 ≤ 4. 
 

 Table 2 :Result of minimizing problem (a) using the algorithm. 
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k i 
7∗  C�
7∗� lM 
̅ 
′ 
7#�∗  C�
7#�∗ � 
1 

1 

3.079333 -1.03113 

-0.5 2.72578 -0.15206 -0.19637 -1.28488 

2 -1 - - - - 

2 

1 

-0.19637 -1.28488 

-0.5 -0.54993 -3.5825 - - 

2 -1 -0.69135 -1.18632 -1.45232 -2.11752 

 
 
 The result shows that the algorithm able to find another new local minimizer in 

lower basin from the previous local minimizer. This confirmed that the algorithm continues 

to run until there is no local minimizer found anymore.  

 

 Noted that, the use of preset directions, lM are different from problem (a) with 

problem (b). It is define differently according to the problem as well as the parameters ½and � � C�
�. Though the value of the parameter need to be chose and adjust until the global 

solution come out from the algorithm. The preset direction also taking as important part as it 

take role as movement of the �-function in finding the 
′. 
 
 Table 3 :Result of minimizing Problem (4.2) at different value of parameter ½. 

 
  

 

 From table above, at different value of ½, that is ½ � 0.5, the computing of the 

algorithm will arrive at local minimizer of b basin. The result is then, C(
!∗� 	≥ 	C�
�∗� which 

means the algorithm had through Step 7 as in the algorithm in Section 3.5. The value of ½ is 

increased so that the ratio ½!/0� � C�
�∗�5 becomes small. 

 

 According to Ge (1990), the reasons for obtaining C�
!∗� 	≥ 	C�
�∗�are either the ratio ½!/0� � C�
�∗�5 is not small enough or ‖
7 � 
�∗‖is too large so that the computer cannot 

recognize the change of ��
, �, ½). Therefore, the both ½! and [� � C(
�∗�5need to be 

increase to make the ratio ½!/0� � C�
�∗�5smaller than the previous one as in Step 7 (refer to 

FFM algorithm in Section 3.5). Do not only decrease ½! to decrease the ratio ½!/0� � C�
�∗�5 
because too small  ½! makes the filled function descend very quickly when 
 is close to 
�∗ 
but very slowly when 
 is a little bit further from 
�∗ and therefore some difficulty arises in 

the minimization process of ��
, �, ½).  

 
 

(c) Griewank%�
� � ∑ �P9X"""%Mä� �∏ cos T�P√MW � 1%Mä�  

 −600 ≤ 
M ≤ 600	for	¥ � 1, … , 4. 

k 
7∗  C�
7∗� 
′ 
7#�∗  C�
7#�∗ � 
1 3.07933 -1.03113 1.38627 1.70618 -0.13354 

2 1.70618 -0.13354 1.04766 1.70618 -0.13354 

 
- - 0.64132 -0.19634 -1.28488 

3 -0.19634 -1.28488 -1.21458 -1.45227 -2.11752 
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The global minimum value is 0 and the global is located in the origin, but the 

function also has a very large number of local minima, exponentially increasing 

with 4.  

 

 
 

Figure 3 :Graph of Griewank function 

 

 

 

 Table 4 :Result of minimizing the Griewank function 

 

k 
7∗  C�
7∗� 
̅ 
′ 
7#�∗  C�
7#�∗ � 
1 50.24036 0.631339 46.70483 46.55751 43.96031 0.483369 

2 43.96031 0.483369 40.42478 40.27747 37.68027 0.355128 

3 37.68027 0.355128 33.99742 33.99742 31.40023 0.246617 

4 31.40023 0.246617 27.86469 27.71738 25.12018 0.157835 

5 25.12018 0.157835 21.58465 21.43733 18.84014 0.088782 

6 18.84014 0.088782 15.30460 15.15729 12.56009 0.039459 

7 12.56009 0.039459 9.02456 8.877243 6.280046 0.009865 

8 6.280046 0.009865 2.74451 2.597197 0.0000 0.0000 

 

 For the simulation, first, the initial points is chose within the box-constraint�600 ≤
M ≤ 600, and the parameters of the FFM that are � � C(
�∗� � 3 and ½ = 1 be fixed as well 

as the number of iteration for the algorithm to run that is Ns=100 and lM = �−5, −10�. As 

the first simulation, let 
" = 50. The result is as the table below.From the result tabulated in 

Table 4, the global minimizer is 0, thus the algorithm successful to arrive at the global 

solution 
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Conclusion 

 
Filled function method (FFM) by Ge’s provided a better mechanism in finding global 

solution for global optimization problem. Whereas, the conventional optimization method 

such as Newton’s Method incapable finding the global but local optima only. Though, the 

FFM combined with the conventional optimization method in the algorithm for this to work 

together with its auxiliary function that is �-function. 

 

 However, Ge’s FFM had several drawbacks in his algorithm which become a field to 

explore for other researchers. There are two major drawbacks that many researchers 

eventually take into consideration. First, there are two adjustable parameters, � and  ½ , 

which greatly affect the performance of the algorithms and need to be appropriately adjusted. 

However, how to adjust the parameters is a very difficult task. Second, the filled functions 

are likely to be ill-conditioned in practice since their function values increase exponentially 

due to an exponential function. As the adjustable parameter becomes larger and larger, which 

is required by the FFM itself, the rapidly increasing exponential function value may result in 

an overflow in the computation (Wei, Wang and Shang, 2013). 
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