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Abstract   Common problems in multiple linear regression models are 
multicollinearity and outliers. In this paper, we will propose a robust ridge 
regression. It is based on weighted ridge least trimmed squares (WRLTS). The 
proposed method (WRLTS) has been compared to some different estimation 
methods, namely the Ordinary Least Squares (OLS), Ridge Regression 
(RR),Robust Ridge Regression (RRR) such as Ridge LeastMedian Squares 
(RLMS), Ridge Least Trimmed Squares (RLTS) regression based on LTS 
estimator and Weighted Ridge (WRID) with respect to Standard Error. Two 
examples are used to illustrate the proposed method. In both examples, WRLTS 
is found to be the best estimator among the other methods in this paper. 
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1.0 INTRODUCTION 
 
        One of the main problems in multiple linear regression is multicollinearity. 
Multicollinearity is the term used to define a case in which the predictor 
variables are themselves highly correlated with each other and one goal of a 
regression model is to discover to what extent the outcome (dependent variable) 
can be predicted by the independent variables. The power of the prediction is 
indicated by 2R , also known as the variance explained by the power of 
determination[6]. 
The presence of multicollinearity has a number of possible serious effects on the 
least-squares estimates of the regression coefficients. Some of these effects may 
be easily confirmed [5]. The ridge regression is one of the techniques that 
remedied the multicollinearityproblem [17]. The technique of Ridge regression 
(RR) is one of the most popular and best performing instead of the ordinary least 
squares (LS) estimation in the existence of a multicollinearity problem [9],[10]. 
Ridge regression was also proposed for selecting the k ridge parameter added to 
the diagonal of the identity matrix. The k chosen should be small enough that the 
MSE of the ridge estimator is less than the MSE of the OLS estimator[9], [10]. 
Many other works on ridge regression have been suggested and some of them are 
[11] and[15] they show that these techniques are immune to the deviation from 
the normal assumption, that is a heavy-tailed distribution which may arise as a 
result of outliers[8]. Outlier is the other common problem in regression. It is the 
extreme observations in the data and may have an unsuitable effect on OLS the 
estimate of the parameter. Robust estimators reduce the effects of outliers in the 
data. The problem is more difficult when both multicollinearity and outliers 
exist. Robust ridge regression analysis has always been the interest of some 
researchers in the literature.  
[8]used the robust ridge regression based on MM estimators (RMM)with the 
highly efficient and high breakdown point estimator. [3]and[21] suggested to 
combine the properties of the ridge estimator and the Least Absolute Value 
(LAV) robust estimator to remedymulticollinearity and outliers simultaneously. 
Their estimates were required robust estimates, using an appropriately chosen 
ridge regression. [12] gave the formulas for deviation of ridge regression 
methods when weights are associated with each observation, and proposed the 
combination of ridge regression with robust regression methods. In addition, [12] 
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suggested a procedure for choosing the optimal value of the biasing parameter k 
adaptively [13], [22] introduced, the most robust estimator having the highest 
possible breakdown point, that is 50%which is known as Least Median Squares 
(LMS) and Least Trimmed Squares (LTS).[2]proposed two alternative ridge type 
GM estimators to handle simultaneously multicollinearityand the existence of 
outliers. [20]reduced the effect of outlier by computing a robust estimates for k, 
and used these estimates to obtain robust ridge estimates for the regression 
coefficients. [16]proposed using the Weighted Ridge (WRID). In 
addition,[29]improved and evaluated new robust regression procedures and 
compared their performance to the best alternatives currently available, in terms 
of breakdown, bounded influence and efficiency.  
[30]applied a robust regression estimator that achieves well, irrespective of the 
amount and configuration of outliers. They show that the best available 
estimators are weak when the outliers are extreme in the regressor space (high 
leverage). Theysuggested compound estimator revise recently published methods 
with an enhanced initial estimate and measure of leverage [13]. 
In this study, robust ridge regression methods based on RLMS and RLTS 
estimators are examined in the presence of both multicollinearity and outliers. 
The performance of the robust ridge estimators examines two examples by using 
real data to evaluate the standard errors on the data of a hospital manpower 
[18]and the data of body fat [19]. The propose methods combining the robust 
ridge regression with the high breakdown point estimator, namely (RLMS) and 
(RLTS). [4]suggested new biased estimators based on the least trimmed squares 
(LTS) ridge regression that possesses ahigh breakdown point, 50% and expected 
that this method modified and be less sensitive to the presence of 
multicollinearity and outliers. And we develop of a robust ridge regression 
estimator based on the weighted ridge least trimmed squares (WRLTS) and is 
believed to have abilities to remedy the problems of multicollinearity and 
outleris. We expect that this new statistical technique is not so easily affected by 
these problems when we compare with several existing estimators, since it 
removed the influence ofmulticollinearity and outliers. The efficiency of the this 
method relative to the alternatives has been examined using SE. In general, it has 
been found that the WRLTS estimator is the best estimator since it will have a 
small standard error against the five existing estimators when the error term is 
not normal. 
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2.0 PROBLEM STATEMENT 

 
2.1 Ridge Regression 

 
Consider the following multiple linear regression models 

,y = xβ+ε    (1) 

where y is a vector of nx1 response values, X is an n× p matrix of the regressor 
variables, β   is a px1 vector of unknown parameter, and ε is an nx1 vector of 
random errors, such that 2

nE( ) = 0,  and  Var(  ) IH H V . It will be convenient to 
assume that the regressorvariables are standardized. Consequently, X'X is apxp 
matrix of correlations between the regressorsandX’y is a px1 vector of 
correlation between the regressors and the response. When the columns of the 
design matrix X have a near-linear dependence, the ordinary least-squares (OLS) 
estimate β̂becomes highly sensitive to random errors in the observed response y 
with large variances[13]. 
If the columns of X are multicollinearity, then the least-squares estimator of β  , 
namely     
ˆ -1β = (X'X) X'y   (2) 
is an unreliable estimator due to the large variances associated with its elements.  
The most popular of the methods that can be used to handle multicollinearity is 
the ridge regression and the estimate can be obtained by using equation (3).  

(3) 
This method, is based on adding a positive constant k to the diagonal element of 
X'X [9], [10].This leads to a biased estimator of β  , called the ridge estimator and 
given by[4]where I is the (pxp) identity matrix. Note that in Equations (2) and 
(3), are different from the OLS estimator and the ridge regression estimator and k 
is the ridge parameter, k >0. [11]suggested that the chosen ridge parameter k, 
shouldbe small positive value and in orderMSE of the Ridge regression estimator 
is less than the MSE of the OLS estimator and added to the diagonal elements of 
the X'X matrix. They proposed another criterion for choosing the k ridge 
parameter as given in Equation (4). 

2
LS

LS
LS LS

ˆ ˆ
pSk  
β' β

(4) 

ˆ k -1
R nβ =(X'X+ I ) X'y
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wherep is the number of independent variables, and   
 

2 LS LS
LS

ˆ ˆ
=

n-p
S

'(y - Xβ ) (y -Xβ )

    (5)                 
 

 
when k=0, ˆRE = LSÊ , when k>0,  ˆRE  is biased, but precise and more stable than 

the LS estimator and when K →∞  , ˆRE →0 . [9]have presented that there always 

exists a value k>0 such that the MSE of the ridge estimator, ˆ( )RMSE E  is less 

than the MSE of the OLS estimator, ˆ( )LSMSE E . 
 

2.2 Robust Regression Methods 
 

[20] Illustrates that robust regression analysis provides an alternative to a least 
squares regression when essential assumptions are unfulfilled by the nature of 
the data [26].The properties of efficiency, breakdown and high leverage points 
are used to define robust techniques. One objective of robust estimators is a high 
breakdown point H  defined by [6]. The breakdown point is simply the initial 
point due to contaminated dataand itcan be defined as the point or limiting the 
percentage of contamination in the data at which any test statistics first becomes 
swamped. Hence, some regression estimators have the smallest possible 
breakdown point of 1/n or 0/n. In other words, only one outliers would cause the 
regression equation to be rendered useless. Other regression estimators have the 
highest possible breakdown point of n/2 or 50%. If robust estimation technique 
has a 50% breakdown point, then 50% of the data could contain outliers and the 
coefficients would remain usable [22],[1] state takes any sample of n data points, 
then robust regression estimators have been proven to be more reliable and 
efficient than least squares estimator especially when disturbances are 
nonnormal. Nonnormal disturbancesare disturbance distributions that have heavy 
or fatter tails than the normal distribution and are prone to produce outliers. 
Since outliers greatly influence the estimated coefficients. There are several 
different classifications of robust regression exist, to use to reduce the outliers 
such as least median squares (LMS) and (LTS).  
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2.2.1Least Median Squares LMS  Estimator 
 

It can be defined as the solution to the following minimize med 2
ir  rather than 

minimizing the sum of squared residuals as in least squares estimation, the 
minimize med of the residuals is minimized. Thus, the effect of outliers on the 
LMS estimates will be less than that on LS estimates. 
Least median of squares regression procedure has a high breakdown point this 
reason makes to interest in it and has strength. Approximately, the breakdown 
point of a statistical estimator is the smallest percentage of contamination which 
may cause the estimator to take on arbitrary large values [7]. 
It now appears that breakdown point has risen as one of the basic criteria for 
judging the robustness of an estimator [20]. 
LMS has a breakdown point of 50%  and this is obviously the highest possible 
breakdown point of any reasonable estimator[22] and [23]. 
 
2.2.2  Least Trimmed Squares LTS Estimator 
 
When problems with parameter estimation occur and assumptions do not hold 
under the linear model, the least trimmed squares is thealternative to OLS 
regression and is very common in statistical modeling [23].[25] explained that 
the objective function of the LTS method is the smallest trimmed of squared 
residuals as follows.  

2 2 2 2
(1) (2) (3) ( )....... nH H H Hd d d d denotes the order statistics of a set of residuals, from 

smallest to largest. LTS are calculated by minimizing the h ordered squares 
residuals, where h = [n/2] + [(p+1) /2], with n and p being sample size and 
number of parameters, respectively. The largest squared residuals are excluded 
from the summation in this method, which allows those outlier data points to be 
excluded completely. Depending on the value of hand the outlier data 
configuration, LTS can be very efficient. In fact, if the exact numbers of outlying 
data points are trimmed, this method is computationally equivalent to OLS. 
However, if there are more outlying data points are trimmed, this method is not 
as efficient. 
On the contrary, if there is more trimming than there are outlying data points, 
then some good data will be excluded from the computation. In terms of 
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breakdown, LTS reaches the maximal possible value of the breakdown point of 
50% [22]and [24]. 
Then the estimate of LTSÊ  is computed by solving the � �n

h  total least squares 

results for all subsets of size h. Hence, the solution that minimizes 2

1

h

i
i
H

 
¦ exists 

and is obtained computationally [24]. 
 
2.2.3  Weighted Ridge Estimators  
 
[9] and [10]developed a ridge regression method in which a constant k is added 
to the X'X matrix in order to estimate thecoefficient of parameter that is 
computed by using the following form 

instead of . The constant k which is based 
on a trace would be objectively determined based on the judgment of the 
researcher [14]. 
The robust ridge regression estimator proposed by [3] first time introduced a 
weighted least squares estimator, and the procedure of the Weighted Least 
Squares estimator can be used to compute the WRLTS estimates. Then the 
Weighted Least Squares estimator can be written as: 
ˆ -1

WLSβ   =  (X  'WX  )   X  'WY (6) 
Then WRID estimator is computed using the formula where W defines a new 
diagonal matrix with diagonal elements iiw .Now, we will define a new diagonal 

matrix with sqaure roots of iiw along the main diagonal. 

 This matrix is symmetrical where 1/2 1/2 -1/2 -1/2W W  = W,  and    W W  = W.  
Now we can define the matrix of regression coefficients for this weighted model. 

wb  = [ 1/2 1/2 -1 1/2 1/2

1/2 1/2 -1 1/2 1/2

-1

(W X)'W X]  (W X)'W Y 
      = (X'W W X)  X'W W Y 
      = (X'WX)  X'WY  (7)

 

The diagonal elements of W matrix are set equal to  
1 ˆif zero
ˆ| |

ˆ1 if zero

 d°
®
° !¯

i
iii

i

   ε
εw =
            ε         (8)

 

ˆ k -1
R nβ =(X'X+ I ) X'y ˆ -1β = (X'X) X'y  
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Wherethe îH  are residuals from an initial LS fit to the data. The weights iiw are 
applied to the observations and are intended to downweight the extreme 
observations. Thus,[6] used weighted least squares estimates and computed by 
applying least squares to the transformed observations ii i ii iw y     and   w x . 

This produces an estimate equal to WLSβ̂  in equation (8). In this case, the 
estimation procedure can be iterated to produce what we called the iteratively 
reweighted least squares estimates [6]. 
 
2.2.4  Ridge Least Trimmed Squares LTS Estimator 
 
[4] proposednew estimator based on the (LTS) ridge estimator.They let ˆLTSβ  be 
the estimate of the LTS parameter. They consider a robust estimate of the LTS 
estimator, LTS-RIDGEβ̂ , based on a ridge estimator β̂ . 

-1
LTS-RIDGE LTS LTS
ˆ ˆ( +k I) β X'X X'Xβ (9) 

where X'X  has the form of a correlation matrix and LTSk  is the robust choice of 
the k parameter and can be calculated as 

2
LTS

LTS
S

ˆ ˆ
pk  
LTS LTSβ' β   (10)

 

Here, p is the number of independent variables and  

2
LTS

ˆ ˆ
=

n-p
S

'
LTS LTS(y - Xβ ) (y -Xβ )

(11)
 

where 2S  is the estimated variance, n is the sample size and p is the number of 
estimated parameters. 
Robust Ridge Regression based on Weighted Ridge LTS estimators (WRLTS). 
These are practical tools for parameter estimations in the presence of 
multicollinearity and outliers [9]. 
To estimate the standard errors (SE)  of the coefficient for the WRLTS written as   

2 1 1( ) ( )S � �A'A+Γ'Γ A'A A'A+Γ'Γ  (12) 

The notation above follows the wiki notation for ridge regression. Specifically,  
A is the covariate matrix, 
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2S is the error variance.  
Γ is the Tikhonov matrix chosen suitably in ridge regression  
 
2.2.5  Weighted Ridge Least Trimmed Squares WRLTS Estimator 
 
To compute weighted robust ridge estimators, the formula used is  

WRID
ˆ  = (  +k -1β X  'WX I)   X  'WY (13) 
The value of k (the biasing parameter), could be obtained from the 
untransformed observations through the transformed observations could also be 
used. The estimator  

WRIDβ̂ With the biasing parameter k and weights iiw  determined from the data is 
denoted to as the weighted ridge (WRID) estimator. An estimator of k, has been 
suggested by [11]. 
The combination of weighted robust LTS estimator with ridge regression can be 
written in the following manner. 

-1
WRLTS
ˆ  = (  +k )  β X  'WX I X  'WY (14) 
wherek obtained from the LTS estimator while W is robust weighted. In order to 
evaluate the robustness of this estimator, we compared the results of the 
numericalindex of (SE) of parameter estimates using real data error distribution 
as well as multicollinearity and outliers. 
 
3.0 REAL DATA ANDRESULTS  

 
Following [14], [8], [28]. The proposed estimation technique WRLTS is 
compared to several existing estimators, namely: Ordinary least squares (OLS), 
Ridge regression (RIDGE), Ridge LMS estimator (RLMS), Ridge LTS estimator 
(RLTS) and Weighted ridge (WRIDGE), using two real data sets. Table 1 
Contains a portion of the data for a study of the relation of the amount of body 
fat (y) to several possible predictor variables, based on a sample of 20 healthy 
females 25-34 years old. The possible predictor variables are triceps skinfold 
thickness (x1), thigh circumference (x2), and midarm circumference (x3). The 
amount of body fat onthe table for each of the 20 persons was obtained by a 
cumbersome and expensive procedure requiring the immersion of the person in 
the water, and Table 2 consists of the measures taken at 17 U.S. Naval Hospitals 
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and the goal is to predict the required monthly man hours for staffing purposes 
with 17 observations on the following 6 variables. Hours monthly man hours 
(response variable), X1 Load average daily patient load, X2, X-raymonthly X-
ray exposures, X3 Bed Daysmonthly occupied bed days, X4 Area Popeeligible 
population in the area in thousands, X5Stay average length of a patient's stay in 
days.SE used for this  purpose to evaluating the results when the error term is 
nonnormal.  
 
Table 1: -Value of Standard Errors of the estimators for the real data (body 
fat) 
 

Parameter OLS RIDGE RLMS RLTS WRIDGE WRLTS 

1E  3.016 0.035369 0.060926 0.050689 0.019977 0.015555 

2E  2.582 0.039837 0.068622 0.057092 0.020084 0.014997 

3E  1.5954 0.051537 0.088777 0.073861 0.023509 0.017153 

 
 
Table 2: -Value of Standard Errors of the estimators for the real data 
(manpower) 
 
Parameter OLS RIDGE    RLMS    RLTS WRIDGE WRLTS 

1E  9.77E+01 0.005995 0.035707 0.0182 0.005995 0.004499 

2E  2.13E-02 0.009223 0.054937 0.028001 0.009223 0.004953 

3E  3.09E+00 0.006068 0.036141 0.018421 0.006068 0.004608 

4E  7.18E+00 0.008479 0.050501 0.02574 0.008479 0.006251 

5E  2.10E+02 0.012707 0.075685 0.038577 0.012707 0.00706 



Proceeding of 2nd International Science Postgraduate Conference 2014 (ISPC2014) 
© Faculty of Science, UniversitiTeknologi Malaysia 

930 
 

 
From Table 1 we can see that the SE for the LS is relatively greater than the 
other estimators when the errors are normally distributed in the presence of  
multicolinearity and outliers, likewise, the results in Table 2also show that the 
SE for WRLTS is least compared to all existing methods indicating that the 
WRLTS is more efficient than the other methods. Evaluation of the efficiency of 
the estimators, measured in terms of the SE ratios and is exhibited in Table 1, 
Table 2 SE of an estimator under evaluation WRLTS by the SE indicates more 
efficiently than a benchmark estimator. For the comparison between WRLTS 
and WRIDGE estimators, results showed that WRLTSand WRIDGEoutperform 
better than the RLTS in the presence of multicollinearity and outliers, On the 
contrary RIDGE, WRIDGE seemed to be more efficient as compared for all 
cases. 
 
4.0 SUMMARY AND CONCLUSION 
 
In summary, the OLS estimator outperforms the other estimators when there is 
no multicollinearity and outliers. But when multicollinearityand outliers exists in 
the dataset the WRLTS and WRID estimators outperformed the other estimators. 
Conversely, when the error term is non normal, the WRLTS estimator was found 
to be less efficient as compared to the RIDGE, WRIDGE, RLMS, RLTS 
estimators.  
Multicollinearity datasets with outliers are very common in practice. In order to 
solve both problems, robust ridge regression estimators biased estimation 
methods are applied. It is concluded that the best model is obtained for the 
WRLTS model with the minimum SE value. 
Real data results above show that the SE values magnitudes are affected by the 
type of outlier. 
The SE value for the WRLTS is obtained as the minimum value compared with 
theothermethods. This result is expected since there are both multicollinearity 
and outliers in the data set. The LTS is better than the OLS in terms of their SE 
values. 
Consequently, in this study, it is shown that for the dataset with both 
multicollinearity and outliers, robust and biased estimation methods give better 
results than those that depend on the OLS. 
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