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ABSTRACT 
 
 
 
 

For many years, gold was considered as an inert catalyst. However, gold 

nanoparticles (AuNPs) are now attracting significant attention as they show different 

chemical and physical properties depending on size and shape. AuNPs have been 

recognised as an active and effective catalyst for organic transformations. Currently, 

there is a growing need to develop environmentally benign metal nanoparticle 

synthesis process that does not use any toxic chemicals. In this regard, biological 

approach for metal nanoparticle synthesis using microorganisms, enzymes, plants or 

plant extracts have been applied as possible eco-friendly alternatives to chemical and 

physical methods. In this research, an environmental friendly method for the 

synthesis and stabilization of AuNPs by the reduction of aqueous AuCl4
− ions using 

leaf extract of Psidium guajava is reported. The optimized parameters for the 

formation of AuNPs are 10 mL of 1 mM Au(III) ions, 1 mL of 1% leaf extract at pH 

6 and at 30 minutes reaction time. UV-Vis spectroscopic analysis of the reaction 

mixture confirmed the successful reduction of Au(III) ions to Au(0). Transmission 

electron microscopic (TEM) analysis revealed a dominant spherical morphology of 

the AuNPs with average size of 7.6 nm. X-ray diffraction (XRD) analysis of the 

purified gold nanoparticles showed five Bragg reflection peaks at 2θ of 38.42 Å, 

44.45 Å, 64.71 Å, 77.61 Å and 81.87 Å corresponding to the (111), (200), (220), 

(311) and (222) lattice planes respectively that could be indexed to the face centred 

cubic (fcc) structure of gold. Fourier transform infrared (FTIR) spectroscopic 

analysis on the purified AuNPs revealed the presence of surface adsorbed 

biomolecules during the preparation. A chitosan supported AuNPs heterogeneous 

catalyst has been synthesised and characterized by various physicochemical 

techniques such as UV-Vis spectroscopy, XRD, TEM analysis, FTIR spectroscopic 

analysis and X-ray photoelectron spectroscopy (XPS). The catalytic performance of 

the chitosan supported AuNPs was examined in two types of organic reactions. The 

catalyst showed excellent catalytic activity in oxidation reaction with complete 

conversion of benzyl alcohol with 97% selectivity to benzaldehyde at 80◦C after 6 

hours. The catalyst could be recycled at least four times without significant loss in 

the conversion. Catalytic activity of the chistosan-GLA/AuNPs was also tested for 

the reduction of 4-nitrophenol to 4-aminophenol using an excess of Psidium guajava 

leaf extract as a reducing agent instead of NaBH4 complete reduction of 4-

nitrophenol occurred within 15 minutes at room temperature. 
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ABSTRAK 
 

 

 
 

Selama ini, aurum dianggap sebagai mangkin yang lengai. Walau 

bagaimanapun, nanopartikel aurum (AuNPs) kini menjadi tumpuan disebabkan sifat 

kimia dan fizik yang tunjukkan itu berbeza-beza bergantung kepada saiz dan bentuk. 

AuNPs telah diiktiraf mangkin yang aktif dan efektif bagi transformasi organik. Kini, 

terdapat keperluan untuk membangunkan proses sintesis nanopartikel logam yang 

mesra alam tanpa menggunakan sebarang bahan kimia toksik. Dalam hal ini, 

pendekatan biologi dalam sintesis nanopartikel logam menggunakan 

mikroorganisma, enzim, tumbuhan dan ekstrak tumbuhan merupakan kaedah mesra 

alam yang mungkin sebagai alternatif kepada kaedah kimia dan fizik. Dalam 

penyelidikan ini, satu kaedah yang mesra alam bagi sintesis dan penstabilan AuNPs 

melalui penurunan ion AuCl4
- akueus menggunakan ekstrak daun Psidium guajava 

dilaporkan. Parameter optimum bagi pembentukan AuNPs adalah 10 mL, 1 mM ion 

Au(III), 1 mL 1% ekstrak daun pada pH 6 dan 30 minit masa tindak balas. Analisis 

spektroskopi UV-Vis ke atas campuran tindak balas mengesahkan penurunan Au(III) 

kepada Au(0). Analisis mikroskop elektron penghantaran (TEM) menunjukkan 

AuNPs dalam morfologi sfera yang dominan dengan purata saiz 7.6 nm. Analisis 

pembelauan sinar-X (XRD) menunjukkan kehadiran lima puncak pantulan Bragg 

pada nilai 2θ 38.42 Å, 44.45 Å, 64.71 Å, 77.61 Å dan 81.87 Å masing-masing 

sepadan dengan satah kekisi (111), (200), (220), (311) dan (222) satah kekisi yang 

diindeks kepada struktur kubus berpusat muka (fcc) aurum. Analisis spektroskopi 

inframerah transformasi Fourier (FTIR), ke atas AuNPs menunjukkan kewujudan 

biomolekul terjerap permukaan semasa pembentukan. Mangkin heterogen AuNPs 

berpenyokong kitosan telah disintesis dan dicirikan melalui pelbagai teknik 

fizikokimia. Seperti analisis spektroskopi UV-Vis, analisis spektroskopi inframerah 

transformasi Fourier (FTIR), analisis pembelauan sinar-X (XRD), analisis mikroskop 

elektron penghantaran (TEM) dan spektroskopi fotoelektron sinar -X (XPS). Prestasi 

AuNPs berpenyokong kitosan sebagai mangkin telah diuji dalam dua jenis tindak 

balas organik. Aktiviti pemangkinan yang sangat baik ditunjukkan dalam tindak 

balas pengoksidaan benzil alkohol dengan penukaran lengkap dan 97% kepilihan 

kepada benzaldehid pada 80◦C setelah 6 jam. Mangkin itu boleh dikitar semula 

sekurang-kurangnya empat kali tanpa pengurangan penukaran yang ketara. Aktiviti 

pemangkinan kitosan-GLA/AuNPs juga diuji dalam tindak balas penurunan 4-

nitrofenol kepada 4-aminofenol menggunakan lebihan ekstrak daun Psidium guajava 

sebagai agen penurun menggantikan NaBH4. Penurunan lengkap 4-nitrofenol berlaku 

dalam masa 15 minit pada suhu bilik. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1  Research Background 

 
 

Research in transition-metal nanoparticles (NPs) has attracted strong interest due 

to their significant physical and chemical properties, which leads to their wide 

applications in different scientific and technological fields, including catalysis, 

optics, electronics, and biotechnology (Cao et al., 2001). Gold nanoparticles have 

been considered as important area of research due to their unique and intense 

plasmon resonance in the visible range and their application in biomedical sciences. 

In catalysis area, transition metal nanoparticles such as Au, Pd, Pt and Rh have 

attracted remarkable interest particularly in alcohol oxidations (Mallat and Baiker, 

2004; Ferri et al., 2006; Hosokawa et al., 2009). Supported gold nanoparticles have 

been studied extensively as catalysts for a wide range of oxidation reactions 

including low-temperature CO oxidation, alkene epoxidation, aldehyde oxidation, 

and aerobic oxidation of alcohols in both gas- and liquid-phase under relatively mild 

conditions (Hutchings et al., 2006). Au based catalyst have been particularly studied 

because of the excellent catalytic performance in which it has shown high activity 

and selectivity in the liquid phase oxidation of benzyl alcohol to benzaldehyde (Li et 

al., 2006; Zahmakran and Özkar, 2010; Chen et al., 2010). 

 
 
Nitroaromatic compounds are widely used in the manufacturing of dyes, 

pharmaceuticals, pigments, plastics, pesticides and industrial solvents (Herrera-

Melián et al., 2012; Narayanan and Sakthivel, 2011). These compounds have been 

`classified as the most pollutants that can produce in the industrial wastewater.  



 

2 

4-Nitrophenol has been listed by the US Environmental Protection Agency 

(EPA) as one of the top organic pollutant (Lai et al., 2011; Li et al., 2012). Recently, 

the role of metal nanoparticles in the field of catalysis opens a new horizon. AuNPs 

serve as an effective catalyst in the reduction of various pollutants like 4-NP, the 

most common organic pollutant. So much attention has been given to develop an 

efficient methodology for the conversion of 4-NP. The use of supported metal 

nanoparticles as catalysts for 4-nitrophenol reduction, in presence of an excess of 

NaBH4 has been reported. Regarding to this problem of using such hazardous 

chemical, Psidium guajava leaf extract in this research has been used instead of 

NaBH4 as green and nontoxic reducing agent. 

 
 

During the last decade different methods have been widely used to synthesize 

nanoparticles with different sizes and shapes. Several chemical methods were 

recognized to synthesize AuNPs and in most cases, the used reducing and sablizing 

agents were toxic in nature. However, with the growth of these new methods, the 

concern for environmental contaminations is also heightened as theses chemical 

procedures involved in the synthesis of metal nanoparticles produce a large amount 

of hazardous chemical as by products. Since AuNPs were using in many biological 

and medical applications (Huang, 2006), it is necessary to avoid toxic chemical 

methods and to devolpe eco-friendly green methods to synthesize AuNPs. Thus, this 

‘green chemistry’ that uses biological organisms such as microorganisms, plant 

biomass or plant extract could be an alternative to common chemical and physical 

methods for the production of nanoparticless in a clean, non-toxic, ecologically 

sound and environment-friendly manner. 

 
 

Green synthesis employing plant extract as reducing agent provides 

advancement over chemical and physical method as it is cost effective due to low 

cost for extract prepration , environment friendly, easily scaled up for large scale 

synthesis and avoid the use of toxic chemicals. Biomolecules as reductants are found 

to have an important advantage over their counterparts as protecting agents (Huang 

et al., 2007). Surface complexation of nanogold with this biomolcules such as poly 

phenols, amino acids and proteins is an emerging field of research. Psidium guajava 

is a type of plants which is cultivated in many parts of Malaysia and other subtropical 
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countries because of its pleasant tasting fruit (Perez et al., 2008). Psidium guajava 

leaves have been used traditionally for the treatment of many diseases worldwide 

(Abdelrahim et al., 2002). They have been reported to possess anti-oxidant properties 

due to the presence of high phenolic contents. This type of chemical constituents has 

great potential to be used as reducing agents in the preparation of metal 

nanoparticles. 

 
 

Supported AuNPs on metal oxides, polymers or activated carbon, have 

attracted a lot of attention during the last decade especially in the oxidation of 

alcohols because of their high activity, selectivity and lower percentage of metal 

leaching compared to their classical noble metal counterpart (Hashmi and Hutchings, 

2007). Chitosan is a biopolymer that has good potential to be used as support 

material for metal nanoparticles. Due to the presence of large numbers of amine and 

hydroxyl groups on its chain it has high ability for metal ions adsorption, dyes and 

proteins (Chiou and Li, 2002). Both the hydroxyl and amine groups present in the 

raw chitosan flakes can be chemically or physically modified (Yang and Yuan, 2001) 

to enhance its adsorption capacities and mechanical strength. 

 
 
 
 
1.2 Catalysis 

 
 

The “catalysis” concept was introduced by Berzelius in 1836 to describe a 

new thing that is able of promoting the occurrence of a chemical reaction by a 

“catalytic contact”. According to him, the substance that is added to the reaction to 

accelerate the rate of the reaction without being consumed or produced at the end of 

the reaction (Farnetti et al., 2009). The chemical substance that is added to accelerate 

the rate of chemical reaction to reach the equilibrium stage without being expanded 

in the reaction is named as catalyst. 

 
 
The catalyst could speed up the rate of a chemical reaction by lowering the 

activation energy of the reaction pathway in order to provide easier access to the 

transition state for the substrate. The catalyst does not allow for thermodynamically 
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forbidden reactions to occur, it only enables reactions to occur at higher rates until 

equilibrium is reached.  

 
 

Catalysts are significant to the chemical industry, with over 90 % of all the 

artificial chemicals using catalysts. Catalysis is one of the scientific disciplines in 

which even small advances, when based on research, may have an outstanding 

impact on society. Due to the vast levels of marketable applications, growth in 

catalysis can have a positive economic impact as well as a profound environmental 

impact, more specifically; on the automotive and power production industries which 

are the sectors that stand to benefit most directly from breakthroughs that are 

predicted to take place in the field of catalysis in the foreseeable future. 

 
 
 
 

1.3 Catalyst 
 
 
By definition catalyst is a material that speeds up the rate to reach equilibrium 

in a chemical reaction without being involved in the reaction (Schuth et al., 1997). A 

catalyst also is a substance that when added in a chemical reaction, accelerates the 

attainment of the chemical equilibrium between the reactants and the products 

without influencing the thermodynamic equilibrium of the process. Frequently 

catalysts are not involved through the reaction and could be found unaffected after 

the reaction completes. In reality, catalysts are submitted to a slow transformation 

with use, causing a general reduction of the activity and/or selectivity. The first main 

difference among catalysts relaies on their nature in relation to the reactants. 

Different types of catalysts have been used in a variety of reactions and, some of 

them include organometallic catalyst, biocatalyst, electrocatalyst and organocatalyst. 

(Seayad, 2005). Organometallic catalysts are playing an important role in 

asymmetric synthesis reactions where, in the most of these catalysts are single 

molecules containing N, C, O, P and S. Biocatalysts which are natural catalysts such 

as lipases and enzymes are used in different types of organic reactions such as trans 

esterifications, ammoniolysis, and epoxidation reactions. Electrocatalysts are metal-

containing catalysts found in fuel cells and are used to accelerate the rate of oxygen 

reduction or fuel oxidation as these types of catalysts are composed of Pt and 
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Pd.(Richardson, 1998). Organocatalyst are also composed of metals but here the 

metal is inserted into an organic framework. 

 
 
The main impact of a catalyst is also to decelerate the reaction that permits 

the activation of energies of different reaction steps in order to, accelerate another 

reaction to reach the desired equilibrium. As illustrated in Figure 2.1, it shows how 

the activation energy of the reaction path is lowered to allow the transition state to be 

reached move easily before forming the combined product of reactants 1 and 2. The 

overall change in energy is the same whether the catalyst is present or not. At the end 

of the reaction, the catalyst can be recovered unchanged, as it does not react and only 

facilitates the reaction of the substrates. The figure also shows the cyclic nature of a 

catalytic reaction, where once the product has desorbed, and more reactants are free 

to adsorb on to the catalyst again and continue the reaction (John, 2010). 

 

 

Activation energies 

Eads-for adsorption 

Ecat-for surface reaction 

Edes-for desorption 

Enc-for activation energy without catalyst 

DH-total heat of reaction 

Figure 1.1 Reaction profile for a chemical reaction with and without catalyst 

Source (Campanati et al., 2003) 
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A good synthesized catalyst must possess three main requirements: being that 

it must exhibit high activity or conversion in a reaction. The second is that it must 

show good selectivity of a desired product, as it may be difficult to separate out the 

side-products. The final requirement is that the catalyst must show good durability 

without deterioration or loss of activity under reaction conditions. 

 
 
 
 

1.3.1 Classification of Catalysts  

 
 

Catalysts generally can be classified into two main classes, namely, 

homogeneous and heterogeneous catalysts. In homogeneous system the catalyst and 

substrate are found to be in the same phase, usually the liquid phase. In this system 

the catalyst is dissolved in a solvent which can also be the reactant or the product 

itself. A homogeneous catalyst shows advantageous in obtaining higher selectivity in 

some reactions particularly in the synthesis of optically active compounds. In the 

exothermic reactions, it makes it easier to control the temperature, and this type of 

catalyst can be further applied to different types of organic reactions in 

hydrogenation, isomerization, carbonylation ,oxidation and alkene metathesis as well 

as cross-coupling, through which most of the catalyst molecules are involved in the 

catalytic reaction. 

 
 

Meanwhile, in heterogenous catalysis, the reactants and catalyst exist in 

different phases (heterogeneous or heterogenized catalyst). Most commonly, solid 

catalysts are used with the reactants in either gas or liquid form. In principle, the 

catalyzed reaction takes place at the phase interface that is on the catalyst surface. 

However, homogeneous catalysts have their own disadvantages in which they are 

difficult to separate from the reaction media as, there is possibility of contamination 

of the products by the catalysts themselves while the treatment of toxic liquid waste 

that is obtained after the separation and the recycling of catalyst expensive (Beller et 

al., 1996) 
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Therefore there is a need to find a way to develop the catalysis research area 

not only to obtain the higher activity and selectivity but also to get the novel catalytic 

properties including significantly improved reactivites, selectivities and ease of 

separation and the higher recyclability of the catalyst. These properties have been 

reported for nanoparticle (NPs) catalysts as compared to their bulk counterparts. 

Many experimental studies on the nanocatalysts have focused on the correlated 

catalytic activity with the particle size. While a particle size is an important 

consideration, many other factors such as geometry, composition, oxidation state, 

and chemical/physical environment can play a significant role in setting the NPs 

reactivity. The focus of this thesis will be on the synthesis of supported AuNPs 

catalyst and its application in oxidation reactions of alcohols and reduction of 4-

nitrophenol and the means by which they are characterized. 

 
 
 
 

1.4 Metal Nanoparticles 

 
 

Metal nanoparticles refer to metal having at least dimension that varies 

between 1-100 nm. Due to their high surface-to-volume ratio, surface energy, spatial 

confinement and reduced imperfections, metal nanoparticles have characteristics 

such as physical, chemical, electronic, electrical, mechanical, magnetic, thermal, and 

biological properties that different from the bulk materials (Narayanan et al., 2011). 

Nanomaterials have achieved significant consideration due to their potential 

applications in drug delivery, sensing, imaging and chemotherapy in recent period. 

Particularly for drug delivery, polymeric nanoparticles, dendrimers, liposomes and 

metal nanoparticles are being widely explored. Nanoparticles have a unique optical 

and electronic property that greatly depends on the size and shape of nanoparticles as 

an effect of quantum confinement of electrons. For example, AuNPs in solution have 

a remarkable colour which is due to the red shift of the plasmon band to visible 

frequencies, unlike that for bulk metals where the plasmon absorption is in the UV 

region. 
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Different types of metal NPs with different shapes, sizes and composition can 

be easily synthesized through either the chemical, physical or biological synthesis 

(Kimling et al., 2006). The common method that was used for the metal NPs 

synthesis was the chemical reduction method by reducing the metal salt using a 

reducing agent such as sodium citrate commonly known as the Tukevich method 

(Turkevich et al., 1951), in which they used toxic and hazardous materials such as 

Sodium Borohydrate (NaBH4) or Hydraizine as reducing agent. From this point there 

is a new concern towards green chemistry and other friendly and green alternative 

reducing agents. In this research the synthesis of the AuNPs was carried out using the 

Psidium guajava leaf extract as the reducing and stabilizing agent. 

 
 
 
 

1.5 Nanoparticles Catalyst  
 
 

Due to the high surface-to-volume ratio, urface energy, spatial confinement 

and reduced imperfections of metal nanoparticles they show different properties such 

as physical, chemical, electronic, electrical, mechanical, magnetic, thermal, optical 

and biological compared to thier bulk partener material (Narayanan et al., 2011).  

The use of metal NPs in catalysis dates back to the 19th century which it was used in 

photography and hydrogen peroxide decomposition. Metal nanoparticles as catalyst 

show advantages that they are easy to remove from the reaction media and the 

recyclability of the catalyst itself is high as compared to the bulk catalyst systems 

due to higher amount of surface area to the volume ratio. Usually homogeneous 

catalysts need large amounts of solvents to separate the catalyst from the products 

which lead to the production of too much waste. Further more if the catalyst could be 

easally separated from the product The larger amount of surface area to volume ratio 

that the metal NPs posses results in higher active sites and it is thus found to exhibit a 

higher catalytic activity and selectivity  

 
 

The transition metal nanoparticles are based on clusters or colloids containing 

from ten to a number of thousands of metal atoms varying in sizes from 1-100 nm. 

The particles with smaller size have shown to be catalytically active with growing 

activity when the size of the cluster is decreasing. For example the turnover rates for 
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the 2 nm particles could be about 8 times higher than that of the particles with a size 

of 12 nm turnover (Grass et al., 2008). Particles with smaller sizes have a higher 

surface atom (larger surface-to-volume ratio) than larger particles, thus resulting in a 

higher amount of surface disorder and yielding more surface limited active sites 

(Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Metal nanosized clusters; small nanoparticles (a) have a higher 

percentage of surface atoms than larger particles (b) resulting in higher amount of 

surface defects yielding more surface limited active sites. Source (Eriksson, 2013) 

 
 

For example, gold as a metal shows unusual characteristics as it has no 

catalytic activity in the form of large particles, where it shows high activity is when it 

is present in nanosized form (Guczi, 2004). It was reported by Jamwal and co-

workers (2011) that palladium nanoparticles supported cellulose was a highly 

efficient heterogeneous catalyst for Suzuki coupling between aryl bromides and 

phenyl boronic acid in water and aerobic oxidation of benzyl alcohols. Recoverable 

ruthenium nanocatalyst prepared by Jacinto et al. (2009) converted aryl and alkyl 

alcohol to aldehydes under mild conditions with negligible metal leaching. 

 
 
One of the main problems for using metal NPs as catalyst is the lack of longer 

stability in which they tend to aggregate, as the small particles have shown to have 

higher surface energies due to their higher surface areas, hence when an aggregation 

occurs it tend to increase the metal to a bigger size which then decreases the 
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percentage of the surface atoms that make the energy of specific system to decreased. 

To overcome this problem there are two pathways, the first way is to add a ligand to 

act as stabilizing agents for the NPs which have shown to increase the stability, and 

the second way is to find a solid support to immobilize the metal NPs to the support 

surface which increase the life span or the recyclability of the catalyst. In this 

research AuNPs has been supported by chitosan-GLA beads as biopolymer support 

in order to increased their stability and avoid the metal leaching problems.  

 
 
 
 

 
1.6 Problem statement  

 
 
Many homogeneous systems able to catalyse liquid phase oxidation have been 

used successfully, resulting in high product yields (Storhoff et al., 2002). However, 

the uses of homogeneous catalysts still have major problems in separating, recycling 

of the catalysts and the product purity which leads to production of excessive 

amounts of waste. In a small scale synthesis these problems are solved by 

purification using chromatography accompanied by the loss of the catalysts, but in 

industrial applications, the costs of the catalyst materials are also importance. The 

problems discussed could be principally minimized by developing heterogeneous 

catalytic systems employing metal nanoparticles catalyst, in which they show 

advantages due to the large surface area they possess, easy removal and regeneration 

of the catalytic species. 

 
 

Oxidation reactions of benzyl alcohol are one of the most important 

transformations of functional groups in organic synthesis reactions, due to the 

production of benzaldehyde (BzH), which is very important chemical that is used as 

starting material in different industrial and laboratory manufacturing (Sheldon et al., 

2001; Mallat and Baiker, 2004). Usually, several oxidizing agents such as 

ammonium permanganate, chromium trioxide (Behera and Parida, 2012) and 

different organic solvents been used to complete the oxidation transformation. 

However, these types of oxygen donors have dangerous drawbacks as they have 

many associated toxicity problems and they are also expensive (Sheldon et al., 
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2001). Organic solvents such as benzene, acetonitrile chloroform, and xylene are 

widely applied for alcohol oxidation (Zhang et al., 2011), their major problem is 

their toxicity and volatility. Thus with the ever increasing environmental concerns, 

our attempt is to develop efficient and green catalytic procedures, utilizing green 

oxidants, such as hydrogen peroxide or oxygen. H2O2 has been selected as an oxidant 

because it is widely available, cheap, safe and overall it produces only water by-

product. Employing clean solvents by using water leads to large industrial 

significance and also environmental meaning (Mallat and Baiker, 2004). 

 
 

Large numbers of heterogeneous catalysts have been prepared and have been 

employed successfully for the oxidation of benzyl alcohols to benzaldehydes (Vinod 

et al., 2011; Layek et al., 2011). Most of these types of heterogeneous catalysts are 

based on silicas which show several advantages such as high stability (both in 

thermal and chemical), fine accessibility, and thier organic groups can be strongly 

anchored to the surface to offer catalytic centres. However, there are some 

drawbacks such as limitation of stability in the aqueous media, especially the basic 

types and are non-degradable. Due to these disadvantages there is a need to find 

other types of support for the heterogeneous catalyst. In this work, chitosan as 

biopolymer was selected to support AuNPs which offers many advantages. It is 

available in nature, non-toxic compared to organic polymers, easy to modify either 

Physicaly or chemically modification and easy degradation at the end of the life 

cycle which leads to application of clean and green chemistry. 

 
 

Catalysis using Au has attracted great interest (Hashmi and Hutchings, 2006) and 

different strategies have been used for the preparation of Au supported catalysts. 

Different chemical techniques have been traditionally used for depositing AuNPs on 

support materials which include co-precipitation, impregnation, deposition–

precipitation and ion exchange. However, “greener” and cost-effective approaches 

are still needed for Au catalysts preparation. The production of Au catalysts normally 

involves toxic and expensive hazardous chemicals via using either chemical or 

physical methods (Corti et al., 2005). It has becomes necessary to find other 

alternatives such as biological methods since this route is cost-effective and eco-

friendly. Nevertheless, to date there are only some reports that focus on the 
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production of Au nano-catalysts by using biological method. Hence, a biosynthetic 

reduction method employing Psidium guajava leaf extract as reducing and capping 

or protecting agent that supporting the stabilization of biosynthesized AuNPs was 

used here due to the higher phenolic content of the laef extract as a simple, green and 

eco-friendly alternative method (Mohanpuria et al., 2008). 

 
 
AuNPs catalyst show high efficiency especially in the reduction of various types 

of pollutant such as 4-nitrophenol, which is classified as one of the dangerous 

organic pollutant that is produces as industrial and agricultural waste. The 4-

nitrophenol is used as building unit for many dyes, pesticides and it breaks down in 

water and soil surface leading to higher toxicity problems in nature towards human, 

animals and plants. Therefore critical health problems and hazards to human being 

can appear in drinking water or eating foods grown in soil contaminated with 4-

nitrophenol. Hence much consideration has been given to find an efficient method 

for the reduction of 4-nitrophenol. NaBH4 is commonly used in 4-nitrophenol 

reduction but it is known to be hazardous and toxic. In this work, an attempt to find a 

safe and green method for the reduction of 4-nitrophenol to 4-amino phenol using the 

green synthesised AuNPs supported on chitosan beads catalyst in presence of 

Psidium guajava leaf extract as an alternative to NaBH4 was investigated. 

 
 
 
 
 

1.7 Objective of Research 

 
 

(i) To synthesize AuNPs by using Psidium guajava aqueous leaf extract. 

(ii) To immobilize and reduce Au(III) ions onto the cross-linked chitosan 

beads.  

(iii) To characterize the synthesized AuNPs and supported AuNPs catalyst 

by using UV-Vis spectrophotometer, XRD, HR-TEM, FTIR, FSEM-

EDX, XPS, AAS, TG-DTA and BET surface area analysis. 

(iv) To evaluate the catalytic activity of the chitosan supported AuNPs 

catalyst in oxidation reaction of benzyl alcohol, primary and 

secondary alcohols and reduction of 4-nitrophenol. 
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1.8 Scope of Research 

 
 

This research involved a simple method for AuNPs synthesis by using aqueous 

leaf extract of Psidium guajava. The leaves are known to have high phenolic 

contents which may be responsible for the reduction of Au(III) ion to AuNPs.Various 

parameters have been optimized such as volume of leaf extract, pH, metal ion 

concentration and reaction temperature to get the optimum reaction conditions. For 

the heterogenization purpose, chitosan was selected as a new, low cost and 

environmental friendly support material for AuNPs due to its higher binding to metal 

nanoparticles. 

 
 
The synthesized chitosan supported AuNPs catalyst was characterized with 

different techniques namely UV-Vis spectrophotometer, elemental analysis CHN/O, 

FTIR, XRD, FESEM-EDX, XPS, HR-TEM, BET surface area analysis and TGA-

DTA and AAS. These techniques determine AuNPs and the supported catalyst 

morphology, thermal stability, surface area and Au loading in the synthesized 

catalyst. 

 
 
The performance of chitosan supported AuNPs catalyst was evaluated in two 

types of organic reaction, firstly oxidation reaction of benzyl alcohol and secondly 

the reduction of 4-nitrophenol to 4-aminophenol. For the oxidation reactions benzyl 

alcohol (BzOH) has been selected as model reaction, and several parameters has 

been varied such as Au loading in the catalyst, reaction time, reaction temperature 

(28○C, 40○C, 60○C, 80○C and 100○C), the molar ratio of hydrogen peroxide to benzyl 

alcohol and catalyst weight. The conversion of benzaldehyde product was 

determined using GC chromatogram and characterized by using FTIR spectroscopy 

and 1H NMR. The optimized condition was applied in other types of oxidation 

reaction of primary and secondary alcohols. For the reduction of 4-nitrophenol the 

leaf extract was used instead of using NaBH4 which promise for a new green 

chemistry methodology. 
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1.9 Significance of Research 

 
 

This research applies one of the green chemistry approaches by synthesizing 

AuNPs using Psidium guajava aqueous leaf extract as reducing and satbilizing agent 

to avoid using toxic chemical and hazardous. The use of biosynthesized AuNPs 

supported onto chitosan beads as catalyst conforms to the environmentally and 

friendly processes.The catalyst was readily recovered by centrifugation. The catalyst 

showed high activity and be recycled four times. The reduction of 4-nitrophenol to 4-

amino phenol using Au nanocatalyst was conducted at room temperature using the 

leaf extract instead of using NaBH4 and the reaction was completed within15 

minutes. 
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