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ABSTRACT 

 

 

 

 

Many embankments constructed on soft ground are susceptible to failure and 

large settlements due to its low strength soil condition. Geosynthetics are used 

effectively as a reinforced material to increase the shear strength, and stiffness of the 

reinforced embankment and consequently, to reduce the total and differential 

settlements. In the first part of the study, four different cases of embankments with 

and without reinforcement, constructed on soft and stiff grounds were studied 

through small-scale physical modeling using centrifuge test and numerical modeling 

using finite element simulation. Comparison between the results using both finite 

element models and centrifuge tests was carried out to validate and identifies the 

reliability of the finite element method. In centrifuge test, a model scale with various 

sizes was simulated to a constant full-scale dimension using different acceleration 

fields. The results show the different deformation behavior for these different 

embankment cases and indicate the significant effect of the geosynthetics 

reinforcement on increasing the stability of embankment. The comparison analysis 

presents a good agreement between results of these two methods. It validated the 

finite element technique in analysis of different embankment cases. The second part 

of the study focus on the geometrical effects on the behavior and failure mechanism 

of embankments. Two full-scale case history embankments in Malaysia and Canada, 

the Muar trial embankment and Vernon highway embankment were verified. Three 

dimensional effects on Muar trial embankment were evaluated by comparing the 

results of two and three-dimensional analysis, in terms of predicted displacements, 

lateral movements, excess pore pressure, factor of safety, and failure height of the 

embankment fill. Moreover, this study attempt to evaluate the boundary limits for the 

applicability of two and three-dimensional analyses by determining the suitable 

geometry configuration of embankment in utilizing the geotechnical analysis. The 

ratio of the calculated failure height of three to two dimensional Finite Element 

analyses (Hf,3D/Hf,2D) has been determine for embankment cases with different base 

aspect ratio of the length to width (L/B). Two shape-factor equations related to the 

bearing capacity of spread footings and safety factor of embankments also utilized to 

account for the geometrical behavior of the embankment regards to its geometrical 

configuration. Results of three-dimensional analyses have better agreement with the 

actual field measurements. It is concluded that neglecting the three dimensional 

effects could mislead the design of the embankment in some condition. In 

conclusion, it is recommended that for “long embankment” with the length to width 

ratio more than two (L/B > 2), it may appropriate to use two-dimensional analysis as 

the three-dimensional safety factor converges to two dimensional safety factor. For 

“short embankment” with the length to width ratio less than two (L/B < 2), three 

dimensional effects on the embankment behavior becomes considerably great and 

should be considered as important factor in design and analysis of embankments. 
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ABSTRAK 

 

 

 

 

Kebanyakan tambakan yang di bina di atas tanah liat lembut terdedah kepada 
Kebanyakan benteng yang dibina di atas tanah lembut terdedah kepada kegagalan dan 

enapan besar disebabkan keadaan tanah mempunyai nilai kekuatan yang  rendah. 

Geosintetik digunakan dengan berkesan sebagai bahan pemgukuh untuk meningkatkan 
kekuatan ricih, dan kekukuhan benteng bertetulang dan seterusnya, untuk mengurangkan 

enapan jumlah dan perbezaan. Dalam bahagian pertama kajian ini, empat kes benteng 

yang berbeza iaitu dengan dan tanpa menggunakan tetulang,yang dibina atas tanah dasar 

lembut dan tegar telah dikaji menggunakan model fizikal berskala kecil melalui ujian 
centrifuge dan model berangka menggunakan simulasi unsur terhingga. Perbandingan 

diantara keputusan menggunakan kedua-dua model unsur terhingga dan ujian centrifuge 

telah dijalankan untuk mengesahkan dan mengenal pasti kebolehpercayaan kaedah unsur 

terhingga. Dalam ujian centrifuge, skala model dengan pelbagai saiz telah disimulasikan 
kepada dimensi sebenar yang tetap menggunakan medan pecutan yang berbeza. 

Keputusan menunjukkan berlaku kelakuan ubah bentuk yang berlainan bagi kes-kes 

tambak yang berbeza dan menunjukkan kesan yang ketara terhadap tetulang geosyntheic 

di dalam peningkatan kestabilan benteng. Analisis perbandingan menunjukkan hubungan 
yang baik di antara keputusan kedua-dua kaedah. Ini mengesahkan penggunaan teknik 

unsur terhingga dalam analisis untuk kes benteng yang berbeza. Bahagian kedua kajian 

ini memberi tumpuan kepada kesan geometri terhadap tingkah laku dan kegagalan 
mekanisme benteng. Dua kes benteng berskala penuh di Malaysia dan Kanada, Benteng 

Percubaan Muar dan Benteng Lebuh Raya Vernon telah disahkan. Kesan tiga dimensi di 

Benteng Percubaan Muar dinilai dengan membandingkan hasil analisis dua dan tiga 

dimensi, dari segi anjakan, ramalan pergerakan sisi, tekanan liang berlebihan, faktor 
keselamatan, dan ketinggian kegagalan benteng. Selain itu, kajian ini telah menilai had 

sempadan yang sesuai untuk analisis dua dan tiga dimensi dengan menentukan 

konfigurasi geometri benteng yang sesuai dalam menggunakan analisis geoteknikal. 

Nisbah ketinggian kegagalan yang dikira menggunakan dua dan tiga dimensi  analisis 
Unsur Terhingga (Hf,3D / Hf, 2D) telah ditentukan melalui kes-kes banteng yang 

mempunyai nisbah yang berbeza untuk aspek asas panjang dan lebar (L / B). Dua 

persamaan faktor bentuk yang berkaitan dengan keupayaan galas asas dan faktor 

keselamatan benteng digunakan untuk mengambil kira kelakuan geometri benteng 
terhadap konfigurasi geometri itu. Keputusan analisis tiga dimensi mempunyai kesamaan 

yang lebih baik dengan ukuran sebenar di tapak. Ia menyimpulkan bahawa dengan 

mengabaikan kesan tiga dimensi, boleh mengelirukan reka bentuk benteng dalam 
beberapa keadaan. Kesimpulannya, adalah disyorkan bahawa untuk "benteng panjang" 

dengan nisbah panjang ke lebar lebih daripada dua (L / B> 2), ia boleh memperuntukkan 

untuk menggunakan dua analisis dimensi kerana faktor keselamatan tiga dimensi 

menumpu kepada faktor keselamatan dua dimensi. Untuk "benteng pendek" dengan 
panjang ke lebar nisbah kurang daripada dua (L / B <2), kesan tiga dimensi ke atas 

tingkah laku benteng menjadi agak besar dan boleh dianggap sebagai faktor penting 

dalam reka bentuk dan analisis benteng. 
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CHAPTER 1 

INTRODUCTION 

 Background of Study 

Embankments are needed in construction of many industrial structures. 

Today, a large number of industrial structures and embankments are constructed in 

areas with low strength grounds such as harbor and river inlets zones. Many 

embankments constructed on such soft grounds are susceptible to failure and large 

settlements due to the incompatible weak condition of the ground soil.  

Many conventional methods and ground improvement techniques have been 

used in the past to increase the shear strength of the soft soils. In the conventional 

method of construction, the soft soil is replaced by a suitable soil or it is improved by 

preloading, dynamic consolidation, injected additives, lime/cement mixing or 

grouting prior to the placement of the embankment. Other options such as staged 

construction with sand drains, the use of stabilizing berms and piled foundations are 

also available for application. All of these methods have a degree of applicability, 

but it is clear all suffer from being either expensive, time-consuming, or both. Hence 

an alternative method such as soil reinforcing by geosynthetics materials, which is a 

fast and economical technique, could cope with this problem to some extent. 

The utilizing of geosynthetics as ground reinforcement has enhanced the 

concept of ground improvement and being used for a wide range of applications e.g. 

slope stabilization, construction of retaining structures, bridge abutment walls and 

embankments. As a deformable material, geosynthetics have the effect of not only 
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increasing the strength and ductility of soil, but also creating a more flexible 

structure. In the construction of geosynthetic reinforced soil structures, successive 

layers of free draining soil are compacted between sheets of reinforcement. This 

procedure results in a stable composite structure that can extend to significant height. 

Such structures can undergo fairly large deformation without catastrophic collapse 

and often without their serviceability be affected. From a mechanical standpoint, 

reinforcing soil provide the benefit of stiffening earthwork structures without 

increasing their mass.  

The other important issue in designing and analyzing of the embankment 

construction on soft ground is to consider the correct behavior of embankment and 

define all possible failure mechanisms. The behavior of embankments is originally 

three-dimensional (3-D) but in many cases two-dimensional (2-D) analysis can give 

an acceptable and reasonable results. In general, two-dimensional (2-D) analysis can 

be categorized into two types: (1) 2-D plane stress which is usually applied for stress 

analysis of thin plate structure by assuming the stress in the direction perpendicular 

to the plate is equal to zero and (2) 2-D plane strain which is defined as the strain 

state in the direction perpendicular to the plane is equal to zero. Most researches 

assumed plane strain condition for numerical simulations of reinforced earth 

structures. 

 Statement of Problem 1.2

There are many problems and issues concerning the modeling and analyzing 

of reinforced embankment on soft ground as described in following: 
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 Problems related to reinforcement mechanism 1.2.1

 There are many factors that affect the mechanism and behavior of 

geosynthetic reinforced soil / embankment, but the most important ones are: 

 Characteristics of soil  

 Characteristics of geosynthetic reinforcement  

 Interaction between soil and reinforcement  

In construction of embankments, the characteristics of soil are very important 

and have a significant influence on stability and failure height of embankment. If the 

soil has weak geotechnical characteristics (soft soil), it causes many limitations and 

problems, i.e. the weak shear strength of soil considerably reduces and limits the 

height of embankment fill and the deformability, compressibility and low 

permeability of soil induce excessive settlements because of developing of excess 

pore water pressure due to construction of embankment on such a compressible soils. 

The characteristics of geosynthetics also have a great influence on behavior of the 

model. With regards to the characteristics of geosynthetic reinforcements, different 

reinforcement mechanisms e.g. membrane type, shear type, and anchorage (pull-out) 

type should be considered. Moreover, soil–geosynthetics interface plays an important 

role in the reinforced structures.  

Aforementioned factors have been studied by many researchers but despite 

the large number of experiences related with using geosynthetics to enhance the 

stability of embankments and other geotechnical projects, the reinforcement 

mechanisms and its interaction with the adjacent soil are not completely well-

defined. Analytical analyses based on failure modes are simplified and do not 

provide an integrated picture of stress-strain and deformation behavior of the 

complete system. The mechanism of load transferring among different elements, 

includes embankment fill, foundation soil, reinforcement and soil-reinforcement 

interaction is complex and is influenced by the properties of the individual elements 
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as well as the relative magnitudes of the properties with respect to each other 

(Varadarajan, 1999).  

 Problems concerning the modeling of embankment 1.2.2

As mentioned before, analytical methods cannot furnish a comprehensive 

mechanism of reinforced embankment system on soft ground. Therefore other 

methods of modeling such as physical modeling by means of full-scale or small-scale 

(centrifuge test) modeling and numerical modeling by means of finite element (FE) 

or finite difference simulations are needed to give a deeper insight of the behavior of 

these structures. Due to economical and time concerns, centrifuge test is considered 

as a preferable technique in physical modeling but there are many factors that affect 

the behavior of embankment in a centrifuge test, which makes some errors and 

differences compare to the results of the prototype. These factors are: 

 Radial gravity of centrifuge tests 

 Different geometry of embankment in each stage of construction due to the 

different gravitational acceleration field 

 Interaction between the side wall of the model box and the model 

 Limitation payload capacity of centrifuge apparatus 

In numerical simulation of centrifuge test, most of researchers have 

considered FE simulations based on prototype full-scale dimensions without 

considering the above factors. Therefore, numerical simulations utilizing small-scale 

dimensions of centrifugal models with considering the above factors are essential for 

a realistic comparison between the numerical results and centrifugal measurements 

and to minimize the differences between these two modeling methods. 
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 Problems concerning the geometrical behavior of embankment 1.2.3

The other issue that should be considered as the most important factor that 

affects the analysis of embankments is geometrical effects (2-D and 3-D behavior) of 

embankment. Generally, as a simple and quick approach, most researchers have 

assumed two-dimensional (2-D) plane strain condition, while there can be a 

difference between the assumption shape of the failure surface in 2-D and 3-D 

analysis. As shown in Figure 1.1, for 2-D analysis an infinite cylindrical surface is 

considered while for 3-D analysis a finite curved surface is assumed which is closer 

to the actual failure surface in many cases. Consequently, direction of maximum 

stress and sliding of soil can not be recognized by 2-D analysis in some cases, which 

leads to inaccurate design of embankments on soft grounds. 

Usually in the factor of safety approach, with a few exceptions, two-

dimensional analysis yields conservative results compared to three-dimensional 

analysis (FS2D < FS3D), while with increasing width of the failing soil wedge 

assumed in a 3-D analysis, FS3D converges to FS2D. 

 

Figure 1.1 Assumption shape of the failure surface in 2-D and 3-D analysis 
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Based on above explanations, it can be conclude that, 2-D analysis can 

give proper results in linear fill cases (long embankments) in which the length of the 

fill is much larger than the width such as roadway embankments, while gives a 

conservative and less accurate results compare to 3-D analysis in a area fill (short 

embankment) in which the length and width of the site are approximately equal. 

Therefore, define a proper behavior of embankment based on its geometrical aspects 

is very important in analysis of such structures. Moreover, 3-D analysis has been 

rarely considered in previous works and researches and the field is still open for 

further studies of 3-D behavior and geometrical effects on behavior of embankments 

on soft ground.  

 Objectives of Study 1.3

The major aim of this thesis is evaluation of geometrical effects on the 

behavior and failure mechanism of embankment and to define that under what 

geometry configuration, the failure mechanism is three-dimensional.  

 In order to attain aims of this thesis, following objectives had been fulfilled: 

1. To determine the influence of important parameters on the deformation 

behavior and failure mechanism of embankment. 

2. To evaluate the geometrical (3-D) effects on deformation behavior and failure 

mechanism of embankment on soft ground.  

3. To define the suitable geometry configuration of embankment, for utilizing in 

geotechnical analysis (2-D or 3-D analysis). 
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4. To perform numerical modeling, utilizing small-scale centrifugal model 

dimensions and considering important factors of centrifuge test in FE 

simulation. 

 Scopes of Study 1.4

This thesis is divided in two parts: The first part deals with the evaluation of 

important factors on the behavior of reinforced embankments by physical (small-

scale centrifuge tests) and numerical modeling (finite element simulation) of 

assumed cases. The second part describes the geometrical behavior and 3-D effects 

on behavior of embankments by FE simulation of case-history embankments. The 

scope of this research comprised of different types of geotechnical modeling and 

analysis with considering different materials in order to achieve the objectives of this 

study. Following scopes and limitations had been covered: 

1. Hypothetical analysis of initial embankment model on soft ground was 

performed based on limit equilibrium analysis of different failure elements 

(e.g., bearing capacity analysis, global stability analysis, elastic deformation 

analysis, pull-out or anchorage analysis, lateral spreading analysis). 

2. Four cases of embankment models based on different type of foundation soil 

and reinforcement condition were considered in centrifuge test and finite 

element analysis. Moreover, two case-history embankments namely ‘Muar trial 

embankment and Vernon highway embankment’ were considered in 

parametric and geometric analyses. 

3. In modeling of four embankment cases, Kaolinite and compacted sand were 

used as soft and stiff foundations respectively. Clayey-sand was utilize as 

embankment fill material and a proper textile was considered as a 

reinforcement material. These materials were considered based on the available 

compatible materials regards to the models of this study. 
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4. Geotechnical laboratory tests were performed to define the properties of 

materials of the study. These tests include direct shear test, compaction 

(proctor) test, mini-vane shear test and tensile strength test. The characteristics 

and properties of case-history embankments considered based on the previous 

works of other researchers on these embankments. 

5. Small-scale physical modeling by means of centrifuge test was performed in a 

mini-centrifuge apparatus of Universiti Kebangsaan Malaysia (UKM). This 

apparatus did not enable a comprehensive quantitative study of the models due 

to its small capacity and payload limitation, which affected the results of this 

study. The small size of the strongbox makes it possible to study a small 

embankment model with a fill slope of 1:1 only and limited boundary 

conditions. Furthermore, It did not equipped with necessary measurement 

sensors, transducers, cells and gauges. Finally, the effect of step loading cannot 

be studied completely, because in-fight loading was not possible with this 

apparatus.  

6. Numerical modeling by means of two-dimensional (2-D) and three-

dimensional (3-D) finite element simulation were carried out. “PLAXIS 2-D” 

and “PLAXIS 3-D FOUNDATION” programs were used for finite element 

simulation and analysis.  

7. 2-D and 3-D parametric and geometric analyses were performed on considered 

cases and two full-scale case-history embankments. 

 Research Significances 1.5

The weak and compressible condition of soft ground leads to embankment 

failure and collapse, which cause wasting of budget, time and consequences in 

stopping or postponing the project. Therefore, the study of the construction of 

embankments on compressible soft soils has been a frequent task for geotechnical 
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engineers all over the world and considering a proper and developed method of 

designing and analyzing of embankments on soft ground is very important and 

necessary.  

Totally, utilizing the 2-D plane strain analysis seems to be conservative in 

some cases, which result in inaccurate strength of subsoil foundations. This can lead 

to an inappropriate designs of embankment over soft ground and cause catastrophic 

failure and collapse. To deal with this issue, three-dimensional analysis is essential 

and significant to evaluate the influence of geometric conditions and investigate the 

3-D effect on deformation behavior and failure mechanism of embankments on soft 

grounds. Considering 3-D effect especially in analyzing the short embankments can 

contribute in increasing the stability of work by giving more accurate and realistic 

results. 

Moreover, the parametric study of this research can give a better insight to 

the researchers and engineers about the influence of important variables on the 

deformations and displacements of embankment in two and three-dimensional (2-D 

and 3-D) analyses. 

Finally, The results of this research study can be a useful guidance for 

engineers in actual and industrial field of embankment construction. It shows the 

proper method of deign and analysis (2-D or 3-D analysis) based on the basal aspect 

ratio of length to width (L/B) of embankment.  

 Thesis Organization 1.6

Chapter 1 presents an introduction of thesis research about construction of 

embankments on soft grounds, including background of the research, statement of 

problems, aim and objectives of study, scopes of study and significance of this 

research. 
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Chapter 2 gives a review of construction of embankment on soft ground, 

reinforcing the embankments by geosynthetics, 2-D and 3-D failure mechanism, 

geotechnical modeling and their application in analyzing the embankments e.g 

analytical, physical and numerical modeling and finally an overview of some case-

history embankments built to failure in Malaysia and Canada. 

Chapter 3 explains the methods and technics that used in this research to 

fulfill the objectives of study include geotechnical laboratory test methods, small-

scale physical centrifuge test and numerical finite element simulation and analyses 

for different embankment case models. 

Chapter 4 present and discuses the results obtained from physical and 

numerical modeling and analysis for various case embankments with different shear 

strength of foundation and reinforcement condition and to compare these results to 

validate the finite element analysis. 

Chapter 5 describes the results obtained from 2-D and 3-D geometric and 

parametric analyses of two full-scale case-study embankments to investigate the 3-D 

effect and compare the 2-D and 3-D results. 

Chapter 6 depicts useful conclusions based on results of this research study 

especially on utilizing the three-dimensional analysis in construction of 

embankments on soft grounds. Moreover, this chapter provides recommendations for 

further research works. 
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