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ABSTRACT 

 

 

 

 

 Magnetoelectric (ME) materials have the ability to convert magnetic energy 

into electrical energy and/or vice versa. This work involves the study of structural, 

electrical and magnetic properties of (f)Ni(1-x)(Co/Mn)xFe2O4/Pb(Mg0.33Nb0.67)0.67 

Ti0.33O3 nanocomposites, which have been successfully synthesized by chemical co-

precipitation method. The presence of both phases in the composites were confirmed 

by using X-ray diffraction (XRD), field emission scanning electron microscopy 

(FESEM) and vibration sample magnetometer (VSM). The variations of dielectric 

constant and loss tangent as a function of frequency as well as temperature were 

studied using two-point probe impedance analyzer. Temperature dependent dielectric 

constant shows diffused phase transition in magnetoelectric nanocomposites. The DC 

electrical resistivity measurements were carried out within the temperature range of 

300 – 923 K. Variation of magnetoelectric voltage coefficient traces the path of 

magnetostriction as a function of magnetic field. All composites show peak behavior 

in magnetic field dependent on magnetoelectric voltage coefficient. The 

magnetoelectric (ME) powder nanocomposite system of (f) Ni(1-x)(Co/Mn)xFe2O4+ 

(1-f) Pb(Mg0.33Nb0.67)0.67Ti0.33O3 (with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) and f = 0.15, has 

been successfully studied. The magnetoelectric coefficient for all the composites 

were measured using static magnetoelectric set up. All magnetic field dependent of 

magnetoelectric measurements show peak behaviour, which can be explained on the 

basis of magnetic field dependent variation of magnetostriction and piezomagnetic 

coefficient behavior. The strong compositional dependent of magnetoelectric voltage 

coefficient is a common feature for ferrite base nanocomposites. In this study the 

magnitude of the magnetoelectric coefficient is found to be higher with increasing 

amount of ferrite phase in nanocomposites samples. The magnetoelectric studies 

show that high resistive magnetic phase with high piezomagnetic coefficient in low 

magnetic field region is helpful to enhance the magnetoelectric coupling. The present 

data suggest that the magnetoelectric interaction depends on the magnetostriction 

behaviour, piezomagnetic coefficient, resistivity, content of constituent phases and 

connectivity between the phases. 
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ABSTRAK 

 

 

 

 

 Bahan magneto-elektrik (ME) mempunyai keupayaan untuk menukar tenaga 

magnetik kepada voltan elekktrik dan/atau sebaliknya. Kajian ini melibatkan sifat-

sifat struktur, elektrik dan magnetik bagi nanokomposit (f)Ni(1-x)(Co/Mn)xFe2O4/ 

Pb(Mg0.33Nb0.67)0.67Ti0.33O3 yang berjaya disintesis menggunakan kaedah 

pemendakan kimia. Kehadiran semua fasa di dalam komposit telah dikenal pasti 

menggunakan kaedah pembelauan sinar-X (XRD), mikroskop electron imbasan 

pancaran medan (FESEM) dan magnetometer getaran sampel (VSM). Variasi 

pemalar dielektrik dan tangen kehilangan (tanδ) sebagai fungsi frekuensi serta fungsi 

suhu telah dikaji menggunakan penganalisis impedans dengan penduga dua titik. 

Kelakuan pemalar dielektrik bersandar suhu menunjukkan pembauran fasa di dalam 

nanokomposit magneto-elektrik. Pengukuran kerintangan elektrik DC telah 

dijalankan dalam julat suhu 300 – 923 K. Variasi pekali voltan magneto-elektrik 

telah menunjukkan magnetostriksi sebagai fungsi medan magnet. Semua komposit 

menunjukkan ciri-ciri puncak di dalam medan magnetik adalah bersandar kepada 

pekali voltan magneto-elektrik. Serbuk nanokomposit magneto-elektrik untuk sistem 

(f)Ni(1-x)(Co/Mn)xFe2O4 + (1-f) Pb(Mg0.33Nb0.67)0.67Ti0.33O3 (dengan x = 0.0, 0.2, 0.4, 

0.6, 0.8, 1.0) dan f = 0.15, telah berjaya disediakan. Pekali magneto-elektrik untuk 

semua komposit telah diukur menggunakan aturan magneto-elektrik pegun. Semua 

pengukuran bagi medan magnet bersandar magneto-elektrik menunjukkan ciri-ciri 

puncak, yang dijelas berasaskan medan magnet bersandar terhadap kelakuan 

magnetostriksi dan pekali piezomagnet. Kebergantungan kuat pekali voltan magneto-

elektrik terhadap komposisi adalah cirri lazim untuk nanokomposit berasas ferit. 

Dalam kajian ini magnitud pekali magneto-elektrik didapati meningkat dengan 

peningkatan amaun fasa ferit di dalam sampel nanokomposit. Kajian magneto-

elektrik menunjukkan bahawa fasa magnet kerintangan tinggi dengan pekali 

magnetik piezo yang tinggi di dalam medan magnet rendah dapat membantu dalam 

meningkatkan gandingan magneto-elektrik. Data semasa menunjukkan interaksi 

magneto-elektrik bergantung kepada kelakuan magnetostriksi, pekali piezomagnet, 

kerintangan, kandungan juzuk fasa dan hubungan antara fasa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

The identification of novel materials with better properties or new 

dispensation techniques to improve the performance of existing materials, along with 

the inexpensive advantages, is always a substance of attention to researchers.  The 

desire to produce novel smart materials is strongly dependent on the availability of 

suitable materials with enhanced properties [1, 2].  Each ceramic material has its own 

properties, which makes it useful for human beings.  There are certain classes of 

materials such as, magnetic and ferroelectric materials, which infuse many aspects of 

modern science and technology.  In this case, these materials are prepared today by 

various techniques in different form.  Therefore, it is essential to know the origin and 

mechanism of magnetic and electrical for every combination and form of the 

magnetic and electrical materials, which is used for specific applications [3-5].  As 

mentioned before, each material has its unique property, which increases its 

importance in useful applications of these materials.  

 

 

It is known that, a piezoelectric material has ability to convert mechanical 

energy into electrical energy and vice versa.  Similarly, magnetostrictive materials 
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can convert magnetic energy into mechanical energy [6, 7].  New generation of 

devices need such type of smart materials, which can convert magnetic energy into 

electrical energy or vice versa.  Such a conversion is possible in a new category of 

materials called magnetoelectric (ME) materials [8, 9].  Very few naturally occur 

single phase materials like Cr2O3, show magnetoelectric phenomena, whereas a 

combination of ferroelectric-ferrite materials generate ME effect extrinsically.  Such 

a combination of individual phases having its own characteristic properties shows a 

new material property, which is absent in their parent phases.  The demerit of the 

single phase magnetoelectric materials is that, it‟s magnetoelectric effect at room 

temperature is very weak and not usable in practical applications [10].  The main 

advantage of composite material is that, one can improve the magnetoelectric 

phenomena by a combination of the best characteristics of ferrite-ferroelectric 

materials.  

 

 

Recently, many research groups paid attention for the improvement of 

magnetoelectricity in different composites, to fulfill the necessary requirements for 

device applications.  As for the trend towards advanced technology, a good addition 

of multi-functions into a single material organization then becomes very attractive.  It 

is expected that new generation of devices using composite materials that combine 

magnetic, ferroelectric and magnetoelectric (ME) properties in an effective and 

intrinsic manner have broad potential applications.  The co-existence of magnetism 

and electricity will produce new physical phenomena (magnetoelectric effect), which 

offer possibilities for new device functions [11-13].  
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Figure 1.1 A sketch representation of ferroelectricity and ferromagnetism 

integration as well as the mutual control between them in multi-ferroics (ferrite and 

ferroelectric materials) 

 

 

 Multi-ferroic (ferrite and ferroelectric materials) offers excellent ferroelectric 

polarization (electric field hysteresis) and magnetization (magnetic field hysteresis) 

[13-15].  It is represented in Figure 1.1 where all magnetoelectric (ME) materials are 

multi-ferroics in nature, and hence the coupling interaction between the two order 

parameters becomes prime important.  The coupling of the ferroelectricity and 

magnetism (either ferromagnetic or ferrimagnetic) in magneto-electricity indicates an 

option that influences the magnetic properties over electric fields in vice versa 

manner.  Thus, the material is suited for many state memory parts or unique memory 

requests.   

 

 

In the case of magnetoelectric (ME) nanocomposites, despite of many 

materials mixtures and structures surveyed, poor performances on the 

magnetoelectric (ME) yields were due to the reduced dielectric, electrical and 

ferroelectric features.  In addition, there are poor reproducibility and large scattering 

of functional properties data [16, 17].  Comprehensive investigations considering the 

different aspects such as, the influence of nanocomposition, preparation routes, 
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nanostructural properties such as interface doping and degree of connectivity, 

magnetic/ferroelectric properties of the parent phases are still lacking. 

 

 

 

 

1.2 Magnetoelectric (ME) Effect in Nanocomposites 

 

 

Neither ferroelectric nor magnetic phase has the magnetoelectric (ME) 

influence except in the composites of these two phases, which can be used to create 

magnetoelectric (ME) behavior from materials, which do not show the 

magnetoelectric (ME) outcome.  This is conveniently achieved by using a mixture of 

magnetic and ferroelectric composites. 

 

 

Consider a particulate of ME nanocomposites as shown in Figure 1.2, where 

the magnetostrictive particles are distributed in the ferroelectric grains. 

 

 

 

Figure 1.2 Schematic representation of particulate ME nanocomposites 

 

 

The magneto-electric influence on nanocomposites material term a product 

property [18, 19], was from the results of cross interaction on different orderings of 
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two separate composite phases.  This two-step process was observed from the ME 

effect in nanocomposites, which is explained using block diagram in Figure 1.3. 

 

 

 

Figure 1.3 Block diagram indicating sequential steps of magnetoelectric effect in 

nanocomposites 

 

 

When a magnetic field is applied to ferrite-ferroelectric composites, the 

magnetic phase changes its shape magnetostrictively i.e. ferrite grains are strained.  

The strain is then transferred to the ferroelectric phase, which exerts stress on it, 

resulting in an electric polarization due to piezoelectric effect.  Thus, the magneto-

electric effect in composites is extrinsic (i.e. in product, unlike in single phase, where 

it is intrinsic), depending on the composite nanostructure and coupling interaction 

across ferromagnetic-ferroelectric interfaces.  The magneto-electric is a response 

from an electric polarization (P) upon magnetic field (H) application (i.e. the ME 

direct effect is denoted as MEH effect: P=α H) and/or the appearance of a 

magnetization M upon applying an electric field E (i.e., the converse ME effect, or 

MEE: M=αE).  The product properties of the composites can be mathematically 

represented as follows: 

 

MEH effect = 
ictionmagnetostrmechanical

magnetic








×    

ricpiezoelectelectrical

mechanical








 (1.1) 

 

MEE effect = 
ricpiezoelectmechanical

electrical








×    

ticpiezomagne
magnetic

mechanical








 (1.2) 
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The ME effect is a product of the magnetostrictive effect in the magnetic field 

i.e. magnetic/mechanical effect and the piezoelectric effect in the ferroelectric type 

i.e. electrical/mechanical effect.  Thus, the ME outcome is a product property 

referring to unique effects which initiate the interaction within ME nanocomposites.  

The magnetostrictive effect on the magnetic phase and piezoelectric effects in the 

ferroelectric phase are included [20].  This trend is related to the concentration of 

individual phases present in the ME nanocomposites.  The conceptual points to 

enhance the ME effect in composites are: 

 

i. Two different phases should be in equilibrium. 

ii. Mismatching between grains ought to be minimum. 

iii. The magnitude of the magnetostriction coefficient of magnetic phase 

ought to be as high as possible. 

iv. The magnitude of the piezoelectric coefficient of the ferroelectric phase 

should be high. 

v. The accumulated charges must not leak through the magnetic phase, i.e. 

resistivity of both phases must be comparable and sufficiently large. 

vi. The ferroelectric/magnetic transition temperatures need to be higher than 

the room temperature, near achieving electric and magnetic ordering 

respectively at room temperature. 

vii. Proper electrical poling of the magnetoelectric (ME) nanocomposites is 

required in order to improve piezoelectricity in ferroelectric phase. 

 

 

 

 

1.3 Statement of Problem 

 

 

The nanocomposites materials of ferrite and ferroelectric phase show 

interesting properties that are superior to conventional ferrite and ferroelectric 

materials.  The magnetoelectric (ME) effect observed in such composites is absent in 

its constituent phases and magnetoelectric (ME) output is small as compared to 

single phase material.  
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It has been seen from previous discussion, selection of a suitable ferrite and 

ferroelectric materials with high piezomagnetic coefficient and piezoelectric 

coefficient can enhance the magnetoelectric effect in nanocomposites.  Where μ is 

the permeability of magnetic phase and έ is the dielectric permittivity of ferroelectric 

phase.  Thus, the primary criterion for selection of individual phases in the 

nanocomposite is to identify materials having similar crystallographic symmetry and 

possesses large magnetic permeability and dielectric permittivity. 

 

 

In nanocomposites the individual phases are mixed, milled, shaped and 

sintered in order to obtain very dense samples.  The reaction between the individual 

phases limits the high value of the sintering temperature for nanocomposites.  The 

problem of high leakage current for such systems arises due to the magnetic phases.  

It has been found that, both the perovskite A
2+

B
4+

O3 and spinel M
2+

Fe2O4 are 

appropriate to enhance the magnetoelectric effect in nanocomposite form.  Hence it 

is necessary to select suitable nanocomposite system which will fulfill all the 

necessary requirements. 

 

 

Terfenol-D, an alloy of terbium, dysprosium, and iron, is known to exhibit 

highest magnetostriction.  However, Terfenol has many limitations such as its poor 

mechanical properties, a single crystal is required for many applications, the high 

costs of Tb and Dy, and the presence of eddy currents when high frequencies are 

involved.  In order to overcome these problems, current research has been focused to 

obtain an oxide based magnetostrictive material that will exhibit higher 

magnetostrictive strains at lower magnetic field strengths.  The advantages of an 

oxide based magnetic material are that it would be much cheaper than the 

commercial alloys and can prevent the generation of eddy currents.  Naturally ferrites 

have very large resistivity (MΩ cm) than the R-Fe compounds (µΩ cm) and thus 

compatible with the ferroelectric materials (GΩ cm) in high frequency applications.  

They are also known to have saturation in their magnetostriction at low bias 

magnetic fields due to small magnetic anisotropy.  It is known that, CoFe2O4 exhibits 

highest magnetostriction among all the known ferrites.  Cobalt ferrite in single 

crystalline form exhibits high anisotropic magnetostrictive strain depending on the 
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composition.  Similarly, Nickel ferrite has attracted considerable attention because of 

its large permeability at high frequency, remarkable high electrical resistivity, 

mechanical hardness, chemical stability and cost effectiveness.  The appropriate 

choice of substituents in nickel ferrite has made it possible to tailor the materials 

properties for a variety of diverse requirements of electronic and magnetic devices.  

[Ni–Co(Mn)] mixed ferrites are highly resistive and magnetostrictive.  Thus in 

thisstudy, nanocomposition for ferrimagnetic phase was varied to change the 

magnetic properties such as magnetization, permeability, and resistivity.  Ni(1-

x)(Co/Mn)xFe2O4 ferrite provides high resistivity and magnetostriction coefficient 

which favors the magnetoelectric effect, and is suitable as one of the phases used for 

the magnetoelectric biphasic composite.  Hence Ni(1-x)(Co/Mn)xFe2O4 with x = 0.0, 

0.2, 0.4, 0.6, 0.8, 1.0 is suitable as piezomagnetic phase used for the magnetoelectric 

biphasic composite.  Large piezoelectric responses have been observed in these 

perovskites near structural phase boundary, the so-called morphotropic phase 

boundary (MPB).  The Pb based ferroelectrics such as Lead-Magnesium-Niobium–

Lead Titanium (PMN-PT) is selected to be a good choice as ferroelectric phase.  

Hence in this case PMN-PT is selected as the ferroelectric phase.  The selection of 

PMN-PT as a ferroelectric phase in magnetoelectric nanocomposites shows 

enhancement in magnetoelectric voltage coefficient compared to other 

magnetoelectric nanocomposites.  Hence PMN-PT in morphotropic phase boundary 

(MPB) region is selected as a ferroelectric phase due to its strongest piezoelectric 

property among various piezoelectric materials. 

 

 

It is expected that, the selected individual phases will fulfill all the necessary 

requirements.  Microscopic studies of composites also shows leakage of relevance 

structure of composites, which may be due to mismatching between grains of ferrite 

and ferroelectric phase in the composites materials.  Since physical properties of 

multiphase nanocomposites depend critically on nanostructure, it is desirable to 

know the distribution of the constituent phases.  A more precise way of 

morphological analysis required for understanding of nanostructural dependent 

properties of magnetoelectric nanocomposites. 
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1.4 Research Objectives  

 

 

The objectives of this study are to: 

 

1. synthesize magneto-electric composite of [Co(1-x)Mn(x)Fe2O4, Ni(1-x)Co(x) 

Fe2O4] nanoparticles  ferrite and Lead-Magnesium-Niobium–Lead 

Titanium (PMN-PT) ferroelectric materials by using chemical co-

precipitation technique.  

2. determine the structure of the ferrite, ferroelectric and nanocomposites 

studies using X-ray diffraction technique. 

3. determine lattice strain of nanocomposites using X-ray diffraction 

technique data. 

4. determine morphology of magneto-electrical nanocomposites by scanning 

electron microscopy (SEM). 

5. determine the electrical properties of Co(1-x)Mn(x)Fe2O4, Ni(1-x)Co(x) Fe2O4 

and PMN-PT. 

6. determine the magnetoelectric characteristics[(dE/dH)H] as a function of 

magnetic field at room temperature for nanocomposites samples [(f) Ni(1-

x)Co(x)Fe2O4 + (1-f) PMN-PT] and [(f) Co(1-x) Mn(x)Fe2O4+ (1-f)PMN-PT].  

 

 

 

 

1.5 Scope of Research 

 

 

In this work, ferrites nanoparticles phase of Ni(1-x)Co(x)Fe2O4,Co(1-x) Mn(x) 

Fe2O4 and ferroelectric nanoparticles phase of PMN-PT were synthesized using 

chemical method.  The two phases were mixed together to obtain the 

nanocomposites.  Morphology and structure of nanocomposites were studied by field 

emission scanning electron microscopy (FE-SEM) and X-ray diffraction.  The 

dielectric properties were determined using impedance analyzer at room temperature 

and well above room temperature in frequency range of 100 Hz to 5 MHz.  
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Temperature dependence of electrical resistivity (ρdc) and the effect of ferrite phase 

addition on the conductivity were also determined.  Magnetic and ferroelectric 

hysteresis loop were determined using vibrating sample magnetometer (VSM) and 

polarization versus electric field (P-E) loop tracer system.  Chemically synthesized 

samples will be used to prepare nanocomposites and subjected at a different sintering 

temperature of 600 °C, 1100 °C, 1200 °C, 1250 °C in order to study the effect of 

sintering on various properties of ME nanocomposites.   

 

 

 

 

1.6 Significance of Study 

 

 

The nanocomposite materials (magneticoelectric nanocomposition) were 

synthesized in particulate form using hydroxide co-precipitation method.  All of 

these samples are carefully processed further in order to obtain a high purity product.  

Since the physical properties of multiphase (nanocomposites) strongly dependent on 

the structural, it is desirable to know the distribution of the constituent phases.  A 

more precise way of morphological analysis is required for understanding of 

nanostructural dependent properties of ME nanocomposites.  Since there are 

tremendous technical demands for large dielectric constant materials, it is significant 

to study systematically the dielectric properties of the magnetoelectric 

nanocomposites, which certainly will cast light on the origin of the high dielectric 

constant in multiphase materials.  The detailed analysis of temperature dependent 

dielectric constant behaviour, especially in the transition temperature region, is 

useful to understand the diffuse phase transition behaviour.  In the present work, we 

have highlighted the nature of the dielectric peak in the vicinity of phase transition 

temperature region.  For this a modified Curie-Weiss law used which seems to be 

more suitable than the standard Curie-Weiss law.  The Curie–Weiss law describes 

the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the 

Curie point: [χ = C / T-TC], where C is a material-specific Curie constant, T is 

absolute temperature, measured in kelvins, and Tc is the Curie temperature, measured 

in kelvin.  The law predicts a singularity in the susceptibility at T=Tc.  Below this 
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temperature the ferromagnet has a spontaneous magnetization.  It is also necessary to 

analyze the temperature dependent dielectric constant behaviour of magnetoelectric 

composites for different contents of individual phases at room temperature and at 

temperatures well above the transition temperature of both phases.  The electrical and 

magnetic properties of this material as a unique substance in the electrical, 

electronics and magnetic applications are important in microwave communication, 

data processing devices, electrical device, circulators and magnetic recording.  

Additionally, tremendous technical demand for large dielectric material constant is 

important. 

 

 

A broad literature reviews on magnetoelectric nanocomposites show wide 

variation in magnetoelectric (ME) voltage coefficient in bulk nanocomposites.  It can 

be observed that the magnetoelectric (ME) voltage coefficient is affected by the 

number of factors such as the method of synthesis, grain size of individual phases, 

nanostructure of the samples, selection of individual phases, porosity, resistivity, 

dielectric and magnetoelectric properties of the nanocomposites. 
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