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Hydrogen energy produced by water electrolysis is considered free from 

green house effect.  However such production still lacks in efficiency.  Therefore we 

proposed an efficient system to increase the hydrogen production by introducing a 

green laser in the water electrolysis system.  In this work a diode-pumped solid state 

laser operating in second harmonic generation (green laser) was employed as a 

source of external electric field.  The green laser was illuminating directly into a 

water electrolysis chamber.  The power of the laser was varied in the range of 0 to 

200 mW.  Conventional electrolysis and electrolysis using white light from halogen 

lamp were also conducted for comparison purposes.  The effect of green laser was 

further characterized based on beam direction, angle and displacement.  The 

direction of the beam was set either in direction or in opposite direction to the 

electric field.  The beam angle was varied in the range from 0° to 180 and the 

displacement is varied within 0 to 6 mm from the end of electrode.  The result 

obtained showed that the hydrogen production corresponding to green laser 

electrolysis is dependent on the power of the laser. Higher laser power will 

contribute to higher hydrogen production.  The rate of hydrogen production is 1.17 

ml min
-1

 with green laser, 0.80 ml min
-1 

in response to white light and 0.67 ml min
-1 

for conventional electrolysis.  The rate of hydrogen production is 1.33 ml min
-1 

when 

light is illuminated from cathode to anode (in direction with residual electric field) 

and 0.267 ml min
-1

 in the opposite direction.  The hydrogen production is found 

inversely proportional with regard to beam angle.  When the angle of irradiation is 

increased, the hydrogen production rate decreases.  Besides, the highest hydrogen 

production can be achieved when the beam displacement is at zero distance from the 

electrodes.  This means that the beam essentially connects the end of electrodes that 

allows fast flow of current of the closed electric circuit in the electrolysis system.  In 

conclusion, green laser has positive impact on the hydrogen production because it 

contributes extra electric field to enhance the weak residual electric field caused by 

the polarizability property of water.   
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Tenaga hidrogen dihasilkan dari elektrolisis air dianggap bebas dari kesan 

rumah hijau.  Walau bagaimanapun penghasilan sebegitu masih kurang efisien.  Oleh 

kerana itu kami mengusulkan sistem yang efisien untuk meningkatkan penghasilan 

hidrogen dengan menggunakan laser hijau dalam sistem elektrolisis air.  Dalam 

kajian ini laser berkeadaan pepejal dipam-diod yang beroperasi pada generasi 

harmonik kedua (laser hijau) telah digunakan sebagai sumber medan elektrik luar.  

Laser hijau telah disinari terus ke dalam kebuk elektrolisis air.  Kuasa laser telah 

dipelbagaikan dalam lingkungan 0 hingga 200 mW. Elektrolisis konvensional dan 

elektrolisis menggunakan cahaya putih dari lampu halogen juga telah dijalankan 

untuk tujuan perbandingan.  Kesan laser hijau selanjutnya dicirikan berdasarkan arah 

alur, sudut, dan sesaran.  Arah pancaran telah ditetapkan sama ada searah atau 

bertentangan dengan medan elektrik.  Sudut pancaran telah diubah dalam julat dari 

0° hingga 180° dan anjakan diubah antara 0 hingga 6 mm dari hujung elektrod. 

Keputusan yang diperolehi menunjukkan bahawa pengeluaran hidrogen berhubungan 

dengan elektrolisis laser hijau bergantung kepada kuasa laser.  Kuasa laser yang 

tinggi akan menyumbangkan penghasilan hidrogen yang tinggi. Kadar penghasilan 

hidrogen ialah 1.17 ml min
-1

 dengan laser hijau, 0.80  ml min
-1 

sebagai tindak balas 

kepada cahaya putih dan 0.67 ml min
-1 

untuk elektrolisis konvensional.  Kadar 

pengeluaran hidrogen ialah 1.33 ml min
-1 

apabila cahaya menerangi dari katod ke 

anod (searah dengan medan elektrik sisa), dan 0.267 ml min
-1 

dalam arah yang 

bertentangan.  Pengeluaran hidrogen didapati berkadar songsang terhadap sudut 

pancaran.  Apabila sudut pancaran bertambah, kadar penghasilan hidrogen 

bertambah.  Selain itu, penghasilan hidrogen yang tinggi juga boleh diperoleh apabila 

sesaran alur adalah pada jarak kosong dari elektrod.  Ini bermaksud alur bertindak 

sebagai penyambunghujung elektrod yang membolehkan arus mengalir laju dalam 

litar elektrik yang tertutup dalam sistem elektrolisis.  Sebagai kesimpulan, laser hijau 

mempunyai impak positif ke atas pengeluaran hidrogen kerana ia menyumbang 

medan elektrik tambahan untuk meningkatkan medan elektrik sisa yang lemah 

disebabkan oleh sifat kepolaran air. 
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INTRODUCTION 

1.1 Background of Study 

Hydrogen (H2) is known as the most abundant element in the universe.  On 

earth, hydrogen can be found combined with other elements; it combined with 

oxygen in the water while as in petroleum, natural gas and coal, hydrogen combined 

with carbon.  However, hydrogen is not a primary energy source, but a secondary 

energy vector (so-called energy carrier).  This means that it has to be produced from 

one of the primary energy sources (Winterand Nitsch, 1988). 

Hydrogen is a clean form of energy carrier that can be produced using many 

different primary sources of energy.  Hydrogen, together with fuel cell, which are 

very efficient energy conversion devices, is attracting the attention of public 

authorities and private industry nowadays.  There are three primary energy sources 

(Riis and Hagen, 2006); 

1. Renewable energy - direct solar, biomass, solar photovoltaic, wind,  

geothermal, 

2. Nuclear energy, and 

3. Fossil fuels - coal, oil (heavy residues and other petroleum  

fractions), natural gas. 
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All the energy we use, including hydrogen, must be produced from one of 

these three primary energy resources.  By using chemical, thermal or electrical 

energy, the energy from primary sources can be stored in hydrogen.  Figure 1.1 

shows a diagram of various primary energy sources that can be used for the 

production of hydrogen.  This proposition is called Hydrogen Economy, HE (Blocks 

et al., 2008).  Some related issues of hydrogen energy are regarding security of 

energy supply, climate change reduction, atmospheric pollution control, and 

electricity generation. 

 

 

 

Figure 1.1  A sustainable Hydrogen Energy chart (Blocks et al., 2008). 
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Hydrogen would be made available through the splitting of water into its 

elements making it long-term and renewable energy sources.  In addition, this 

hydrogen would recombine with oxygen in the air to discharge this energy, so 

thatwater would be returned to the atmosphere as part of the natural water cycle.  

This is the reason why water splitting process is called carbon neutral process and 

sustainable technology.  There are great challenges for hydrogen as an energy carrier 

since it is not fully developed yet over the world.  Many countries are in struggling 

mode to develop the hydrogen economy as there are a number technological and 

non-technical barriers need to be addressed. 

The basic physical properties of hydrogen are it is a colourless, odourless, 

tasteless and non-toxic gas.  Table 1.1 shows a comparison of hydrogen and other 

fuels available.  From the table, liquid hydrogen boils at -252.77 °C, and it has a 

density of 70.99 g/m
3
.  Thus, with these properties, hydrogen has the highest energy-

to-weight ratio to compare with of all fuels: 1 kilogram (kg) of hydrogen has the 

same amount of energy as 2.1 kg of natural gas or 2.8 kg of gasoline.  Hydrogen 

burns in air at concentrations in the range of 4 to 75 % by volume while methane 

burns at 5.3 to 15 % concentrations by volume.  The highest burning temperature of 

hydrogen is 2318 °C and is reached at 29% concentration by volume in air (Rand and 

Dell, 2008). 

Hydrogen H2 is the lightest molecules above others with molecular weight 

equal to 2.0016 and densities of hydrogen gas is 0.0899 kg/m
3
.  Due to its low 

density, hydrogen liquid weighs is lower than petroleum-based fuels.  The hydrogen 

liquid has a very low boiling point that is 20 K, so that it requires fairly sophisticated 

equipment for preparation process and maintenance if hydrogen is to be employed as 

an energy vector and also a non-polluting fuel in future (Elin et al., 2010). 
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Table 1.1: Technical Comparison of Hydrogen Liquid with Other Fuels(Rand and Dell, 2008). 

 Hydrogen Petroleum Methanol Methane Propane Ammonia 

Boiling point (K) 20.3 350-400 337 111.7 230.8 240 

Liquid density 

(kgm
-3

), NTP* 
70.8 702 797 425 507 771 

Gas density 

(kgm
-3

), NTP* 
0.0899   0.718 2.01 0.77 

Heat vaporization 

(kJkg
-1

) 
444 302 1168 577 388 1377 

Higher heating value/mass 

(MJkg
-1

) 
141.9 46.7 23.3 55.5 48.9 22.5 

Lower heating value/mass 

(MJkg
-1

) 
120 22.38 20.1 50 46.4 18.6 

Lowerheatingvalue/liquid/volume 

(MJm
-3

) 
8520 31170 16020 21250 23520 14350 

Diffusivity in air 

(cm
2
s

-1
) 

0.63 0.08 0.16 0.2 0.1 0.2 
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Lower flammability limit/vol. 

% (in air) 
4 1 7 5 2 15 

Upper flammability limit/vol. 

% (in air) 
75 6 36 15 10 28 

Ignition temperature in air (°C) 585 222 385 534 466 651 

Ignition energy 

(mJ) 
0.02 0.25  0.3 0.25  

Flame velocity 

(cms
-1)

 
270 30  34 38  



6 

 

 

 

1.2 Problem Statement 

Hydrogen energy has a high potential as an energy carrier in future.  The 

current available methods on producing hydrogen has many drawbacks such as the 

release of greenhouse gaseous (GHG).  Uncontrol released of GHG to atmosphere 

would lead to serious issues related to climate change effects due to active industrial 

activities (Judith, 2010).  Currently, almost all hydrogen (approximately to 78 %) is 

manufactured through reforming of hydrocarbons (natural gas and petroleum).  This 

process has low energy-conversion efficiency and contributes about 8.8 tonnes of 

CO2 gas emission annually (Rand and Dell, 2008).  Other method on producing 

hydrogen is through coal gasification that contributes to 18 % of hydrogen energy.  

This method produces more pollution due to GHG emissions than petroleum and 

needed high cost maintenance.  In fact, the energy sources mentioned would 

eventually become limited by time as the sources are non-renewable.  The remaining 

4 % of hydrogen energy were from electrolysis process.  There are several types of 

water electrolysis available such as photobiological electrolysis (using algae 

bioreactor), biocatalysed electrolysis (using microbes) and photocatalytic electrolysis 

(also known as electrolytic, that using semiconductor material as an electrodes and 

solar energy as a source of energy).  All this processes are dependant to nature in 

terms of energy source to initiate the process, as well as the organisms.  In this 

attempt, laser electrolysis is introduced as a new technique of electrolysis that is 

more convenient light source to compare with solar energy for commercial 

electrolysis.  Although electrolysis gives a small proportion in hydrogen production 

by using current method, we believed that this process would contributes a lot to 

society if the existing methods are upgraded with suitable materials and substances. 
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1.3 Objectives 

The main objective of this research is to develop an efficient water 

electrolysis system by using laser to enhance the residual electric field.  In order to 

achieve the main objective of the research, following tasks are performed; 

 

1. To construct the water electrolysis reactor and optimize the 

electrolysis parameters. 

 

2. To optimize the electric field induced by diode-pumped solid state 

laser including the direction and distance upon electrodes position and the 

power of green laser. 

 

3. To characterize the effect of residual electric field on hydrogen 

production efficiency. 

 

1.4 Scope of Work 

Initially, the electrolysis chamber was set up based on the basic electrolysis 

circuit.  Graphite (C) rode was used as the electrodes throughout the experiment.  

The distance between two electrodes is fixed to a certain distance.  In order to 

increase the area of electrode, molybdenum was added into the electrolysis cell.  

Distilled water was added with sodium chloride (NaCl) to become an electrolyte for 

electrolysis process and ethanol to act as electron donor.  Electric power supply was 

used to supply electric charge to initiate the electrolysis.  Diode pumped solid state 

laser with second harmonic generation was employed as a source of laser 

electrolysis.  The gas yield during the electrolysis is collected inside a test tube 

contained the graphite electrodes.  



8 

 

 

 

1.5 Significant and Original Contribution of This Study 

This research is carried out to investigate the influence of green laser 

irradiation to electrolysis efficiency during water electrolysis.  Conventional 

electrolysis usually takes longer time to produce hydrogen, while in industrial 

hydrogen manufacture, the high production cost and environmental problems are 

unavoidable.  By introducing laser electrolysis (an employment of laser as a light 

source during water electrolysis), the weak residual electric field during conventional 

electrolysis can be solved.  This is due to the coherent properties of the laser light 

that related to the polarization of the light.  As the polarization of the laser light is 

high, the amplitude of the electric field carried by the laser is high.  Thus, the 

hydrogen production during laser electrolysis could be enhanced.  It is considered as 

an efficient method in producing pure hydrogen for commercial purposes.   

1.6 Thesis Structure and Organization 

This thesis consists of five chapter including the introduction, literature 

review, methodology, result and discussion, and conclusion.  The first chapter will 

introduce briefly about the hydrogen research.  The advantages and disadvantages 

regarding hydrogen energy are described.  Furthermore, the objectives of the 

research, problems regarding this topic, and the scope of the research are discussed. 

The literature reviews on previous study about hydrogen production using 

various methods are discussed in Chapter 2.  Besides, the fundamental theories of 

water electrolysis process are discussed in details.  The discussion consist the water 

properties as abundant source in hydrogen production industry, current and under 

development methods of hydrogen production, and diode pump solid state laser 

working principle that is proposed in laser electrolysis. 
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Chapter 3 describes the research methodology; where the apparatus and 

materials used to build the electrolysis cell are explained in detail.  The discussion 

includes the variable parameters to enhance the hydrogen production such as the type 

of catalysts that being used, ethanol, molybdenum, and the electrodes.  Other than 

that, the laser properties that are being studied for laser electrolysis is discussed in 

details. 

The results and discussion are presented in Chapter 4 including the 

explanation of the effect of green laser irradiation during laser electrolysis and how 

green laser react with water molecules and increased the electrolysis efficiency.   

Overall work done during this research is summarized in Chapter 5.  The 

problems encountered during experiment are discussed and the solutions to 

overcome the problems that would increase the value added of the findings are 

suggested. 
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