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ABSTRACT 

 

 

 

 

Three major aspects of chemometrics have been investigated in this study 

namely Quantitative Structure-Activity Relationship (QSAR) and database mining, 

classification and multiblock methods.  In the first analysis, 197 artemisinin 

compounds were divided into training set and test set together with structural 

descriptors generated by DRAGON 6.0 software had been used to develop three 

QSAR models.  Statistics of  the models were (r
2
/
 
rtest

2
) 0.790/0.853 for Forward 

Stepwise-Multiple Linear Regression (MLR), 0.807/0.789 for Genetic Algorithm 

(GA)-MLR and 0.795/0.811 for GA-Partial Least Square (PLS).  The rigorously 

validated QSAR models were then applied to mine a chemical database which 

resulted in four potential new anti-malarial agents.  The same artemisinin data set 

was then classified into active and less active compounds to develop reliable 

predictive classification models and to investigate the consequences of using various 

data splitting and data pre-processing methods on classification.  Principal 

Component Analysis (PCA) and boundary plot had been utilized to visualize the four 

classifiers namely Support Vector Machine (SVM), Linear Discriminant Analysis 

(LDA), Linear Vector Quantization (LVQ) and Quadratic Discriminant Analysis 

(QDA).  Kennard-Stone data splitting and standardization had produced better results 

in terms of percent correctly classified (% CC) compared to Duplex data-splitting 

and mean-centering.  Moreover, LDA was found to be superior as compared to the 

other three classifiers with lower risk of over-fitting.  Lastly, multiblock analysis 

methods such as Multiblock PLS and Consensus PCA have been implemented on 

polychlorinated diphenyl ethers (PCDEs) data set together with their respective 

descriptors blocked into three groups labelled as X1D, X2D, X3D and a property block, 

Y which consists of log PL (Pa, 25°C), log KOW (25°C) and log SWL (mol/L, 25°C).  

Their performance were then compared to single block methods that is PLS and 

PCA.  The PLS models of each descriptor block with respect to each property were 

statistically best-fitted and well predicted with rtrain
2
 values greater than 0.96 while 

the rtest
2
 values range from 0.86 to 0.98.  It is interesting to note that the combination 

of the three descriptor blocks into a single block to produce Multiblock PLS super-

scores (MBSS) model which was superior than Multiblock PLS block-scores 

(MBBS) yielded slightly better rtrain
2
 value and significantly better prediction with 

higher rtest
2
 as compared to PLS model of individual descriptor block.  In addition, 

three measures of block similarity such as Mantel Test, Rv coefficient and Procrustes 

analysis were used to investigate similarity and correlation between the blocks along 

with Monte Carlo simulations to determine their significance.  Based on the 

similarity index between two blocks, X1D descriptors resembled Y block better while 

X2D was more correlated to X1D block.  In short, the chemometric methods had been 

applied successfully on both data sets using various descriptors generated by 

DRAGON software and yielded promising results beneficial not only in 

chemometrics area but also in drug design. 
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ABSTRAK 

 

 

 

 

Tiga aspek utama bidang kimometrik telah disiasat dalam kajian ini iaitu 

kaedah Hubungan Kuantitatif Struktur-Aktiviti (QSAR) dan pangkalan data, 

klasifikasi dan multiblok.  Dalam analisis yang pertama, 197 sebatian artemisinin 

telah dibahagikan kepada set latihan dan set ujian beserta deskriptor struktur yang 

dijanakan oleh perisian DRAGON 6.0 telah diguna untuk menghasilkan tiga model 

QSAR.  Statistik model ialah (r
2
/
 
rtest

2
) 0.790/0.853 bagi kaedah Langkah Maju-

Regresi Linear Berganda (MLR), 0.807/0.789 bagi Algoritma Genetik (GA)-MLR 

dan 0.795/0.811 bagi GA-Regresi Linear Separa (PLS).  Model QSAR yang sah 

digunakan untuk mencari dalam pangkalan data kimia lalu menghasilkan empat 

bahan kimia baharu yang berpotensi sebagai agen anti malaria.  Set data artemisinin 

yang sama kemudian dikelaskan kepada aktif dan kurang aktif untuk membina model 

klasifikasi, di samping menyiasat kesan penggunaan pelbagai teknik pemisahan dan 

pra-prosesan data terhadap klasifikasi.  Analisis Komponen Prinsipal (PCA) dan plot 

sempadan telah digunakan untuk menggambarkan empat jenis model klasifikasi iaitu 

Mesin Vektor Sokongan (SVM), Analisis Pembezalayan Linear (LDA), 

Pengkuantuman Vektor Linear (LVQ) dan Analisis Pembezalayan Kuadratik (QDA).  

Kaedah Kennard-Stone dan pra-prosesan piawai telah menghasilkan keputusan yang 

lebih baik dari segi peratus pengkelasan yang betul (% CC) berbanding Duplex dan 

pra-prosesan purata-tengah.  Di samping itu, LDA didapati lebih baik dengan risiko 

suaian lampau yang lebih rendah.  Akhir sekali, analisis multiblok seperti Multiblok 

PLS dan konsensus PCA telah dijalankan ke atas set data poliklorin difenil eter 

(PCDEs) beserta dengan tiga kumpulan blok deskriptor masing-masing iaitu X1D, 

X2D, X3D dan blok sifat, Y yang terdiri daripada log PL (Pa, 25°C), log KOW (25°C) 

and log SWL (mol/L, 25°C).  Prestasi kaedah ini seterusnya dibandingkan dengan 

kaedah blok tunggal iaitu PLS dan PCA.  Model PLS setiap blok deskriptor terhadap 

setiap sifat secara statistiknya best-fitted dan ramalan baik dengan nilai rtrain
2
 lebih 

besar daripada 0.96 manakala nilai rtest
2
 adalah dalam julat 0.86 hingga 0.98.  Sesuatu 

yang menarik untuk diperhatikan bahawa gabungan tiga blok deskriptor ke dalam 

blok tunggal menghasilkan model Multiblok PLS Super-Skor (MBSS) yang lebih 

baik daripada Multiblok PLS Blok-Skor (MBBS) menghasilkan nilai rtrain
2
  dan rtest

2
 

yang lebih tinggi berbanding model PLS blok deskriptor individu.  Sebagai 

tambahan, tiga pengukuran keserupaan blok seperti ujian Mantel, pekali Rv dan 

analisis Procrustes telah digunakan untuk menyiasat keserupaan dan korelasi antara 

blok diikuti simulasi Monte Carlo untuk menentukan kepentingannya.  Berdasarkan 

indeks keserupaan antara dua blok, deskriptor X1D lebih menyerupai blok Y manakala 

deskriptor X2D mempunyai korelasi lebih kepada blok X1D.  Ringkasnya, kaedah 

kimometrik telah berjaya digunakan ke atas kedua-dua set data menggunakan 

pelbagai deskriptor yang dijanakan oleh perisian DRAGON dan menghasilkan 

keputusan bermanfaat bukan sahaja dalam bidang kimometrik tetapi juga bidang 

rekabentuk ubatan.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Research 

Chemometrics and cheminformatics is a multi-disciplinary information 

science (Kowalski, 1981) that integrates subject areas like chemistry, mathematics, 

statistics, biology and computer science.  These fields are expanding rapidly and 

considerably in recent years due to the increasing computational power together with 

advances in computer technology and data analysis as well where huge amount of 

data is readily available with increasing efficiency of chemical information storage 

and retrieval capabilities.  Furthermore, the data can be analysed rapidly and 

efficiently with improved analytical measurements, modern analytical 

instrumentation for data acquisition, storage, display and processing as well as 

detecting and correcting analytical instruments problems that can then easily be 

converted to useful information and knowledge especially in pharmaceutical and 

environmental areas.  Hence, computer revolution leads to a new branch of analytical 

chemistry, namely Chemometrics. 

Chemometrics was first introduced in 1971 by Svante Wold who three years 

later collaborated with Bruce Kowalski to form The International Chemometrics 

Society (ICS).  Chemometrics involves the implementation of statistical and 

mathematical methods analogously similar to biometrics, econometrics and 

psychometrics but concentrated only on chemical data and practices (Wold, 1995).  



2 

 

According to Massart (1997), chemometrics can be defined as "chemical discipline 

that uses mathematics, statistics and formal logic (a) to design or select optimal 

experimental procedures; (b) to provide maximum relevant chemical information by 

analyzing chemical data; and (c) to obtain knowledge about chemical systems". 

Basically, chemometrics is an application-driven discipline where the focus 

of chemometrician is to develop solutions to chemical problems such as in 

multivariate calibration and pattern recognition.  Major applications of chemometrics 

include exploratory data analysis, multivariate regression or calibration, clustering 

and classification as well as variable selection.  Besides application, chemometrics 

also covers fundamentals and methodology.  However, Wold (1995) strongly 

believes that chemometrics should focus on chemical problem-solving rather than 

method development.  Several computer programs or software packages have been 

developed for specific instruments or for general use in chemometrics such as PLS 

Toolbox (Eigenvector_Research_Inc., 2010) and Unscrambler (Camo_Software_AS, 

2010).  Nevertheless, some of the expert algorithm developers in chemometrics 

prefer to use programming language like MATLAB (The_Mathworks_Inc., 2008) as 

platform for method development due to its flexibility.  Moreover, modification of 

chemical method and development of new data analysis techniques may be required 

to handle complex data analysis problems (Lavine, 2000). 

At first, limited number of chemometrics articles on methods and applications 

were published in a separate section in Analytica Chimica Acta and Analytical 

Chemistry under the series entitled ‘Computer Techniques and Optimization’ and 

'Statistical and Mathematical Methods in Analytical Chemistry' which later changed 

to 'Chemometrics' respectively.  When this area became increasingly and widely 

accepted, journal publication dedicated to chemometrics, namely Chemometrics and 

Intelligent Laboratory Systems was first published in 1986 followed by Journal of 

Chemometrics which currently covers mostly methodology and fundamentals of 

chemometrics (Hopke, 2003).  However, various applications of chemometrics 

would be presented in the broader analytical or application-oriented journals such as 

Applied Spectroscopy and SAR and QSAR in Environmental Research. 
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Interestingly, application areas of chemometrics have spread and contributed 

to other disciplines that involve chemical instrumentation such as process 

engineering and environmental science as well as represented as new domain like 

cheminformatics, process modelling, genomics and proteomics.  Cheminformatics 

also known as chemical informatics is a subfield of chemometrics that was 

introduced in the late 1990s where it integrated other disciplines like computational 

chemistry, molecular modelling and chemical information to solve problems in 

chemistry (Gasteiger, 2006).  As defined by Brown (2005), this interesting new field 

is "the mixing of those information resources to transform data into information and 

information to knowledge for the intended purpose of making better decisions faster 

in the area of drug lead identification and optimization".  Chonde (2014) discusses 

the progress of three stages of cheminformatic research area that includes capturing, 

storing and mining data.  Thus, the application of cheminformatics includes storage 

and retrieval of large amount of data or information relating to compounds, virtual 

screening and QSAR or QSPR especially in drug discovery and development (Leach 

and Gillet, 2003).  There are altogether thirteen main journals in cheminformatics 

research area such as The Journal of Chemical Information and Modelling, Journal of 

Chemical Theory and Computation, Journal of Cheminformatics, and Drug 

Discovery Today where 40% of them are dedicated to biological research and drug 

design (Chonde and Kumara, 2014). 

The development of new compounds with specialized properties particularly 

drugs is becoming more interesting due to rapid advancement in technology and 

increasing demand for new drugs.  In medicinal chemistry, the traditional process of 

producing new chemical compounds with novel properties requires laborious 

screening and testing which involves lengthy, very time consuming and costly 

process.  As an alternative, computer has been used as tool to facilitate the design 

and discovery of new drugs.  The computing devices able to handle huge amount of 

data in a relatively short period of time, visualize molecules and gain better insight 

into the chemical and biological impacts of the problem at hand with least efforts yet 

yielding maximum information.  Moreover, significant advances in information 

technology and widespread availability of public databases further support the 

development and enhancement of established computational methodologies 
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(Agrafiotis et al., 2007).  Such technique should narrow down the number of 

potential molecules to be tested for their biological, physical and chemical properties.  

This consequently minimizes the costs, time and efforts involved in drug research. 

In addition, the increase in resistance to older drugs and newly discovered 

types of infections such as mutated bacterial and viral infection have created an 

urgent and continuous need for discovery and development of new drugs (Gozalbes 

et al., 2002).  Quantitative Structure Activity Relationship (QSAR) that offers 

valuable information about biological predictivity represents one of the best 

computationally inexpensive methodology in the design of potential bioactive drugs. 

1.2 Quantitative Structure-Activity Relationships 

Quantitative-Structure Activity Relationship or commonly known in 

abbreviated form as QSAR is an important area in chemometrics and chemistry in 

general.  It is a statistical analysis which directly calculates physical and biological 

properties of molecules from their physical structure.  Based on the definition of 

QSAR above, the objective of a QSAR model is to develop inductively relationship 

between structure and property using information extracted from a set of numerical 

descriptors characterizing molecular structures. 

Figure 1.1 illustrates that the molecular structure of a compound is somehow 

related to its property.  Since the exact relationship is not known, an indirect 

approach is used which consists of two main parts (Gasteiger, 2006).  The first part is 

calculation of structural descriptors that represent molecular structure of each 

compound.  Next, selection of subsets of descriptors to develop model that predict 

the desired property. 
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 Figure 1.1 The general QSAR problem 

Theoretically, QSAR is a modelling technique in which the observed 

activities or properties of chemical compounds are correlated with structural 

descriptors derived from the molecular structures and can be represented by 

mathematical equation as shown below: 

Molecular activity = f (descriptor) = a1d1 + a2d2 +a3d3 + .....+ andn  (1.1) 

where d1, d2, d3, …dn are structural descriptors and a1, a2, a3 …an are coefficients.  

The correlation model developed can be utilized to predict activities of compounds 

not included in the model development process, to form the basis for understanding 

factors affecting their activity or to get better understanding of interactions between 

molecules (Parvu, 2003).  Hence, a medicinal chemist has to focus making inferences 

from molecular properties and structural descriptors because the interaction 

mechanism of how drugs exert their biological effects is complex and mostly 

unknown. 

In this study, structure-activity relationship approach as discussed above will 

be implemented to develop models that can correlate structural features of the 

compounds obtained from literature with their anti malarial-activity.  Good models 

developed using this method will be applied to screen large chemical databases.  

MOLECULAR 

STRUCTURES 
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Results of the screening probes can be used to postulate structure of lead molecules 

that can be synthesized in the production of new drugs in the pharmaceutical 

industries. 

1.3 Chemometrics 

Regression and classification methods are commonly used in chemometrics 

and employed extensively in this research.  Regression or calibration relates samples 

to one or more continuous numerical properties and consequently can be used to 

predict actual value of the response.  Traditional chemical or physical relationship 

usually consider one or few variables at the same time.  Univariate regression deals 

with only one variable while multivariate regression such as PLS involve more than 

one variable and take into account joint effect of all variables.  Typically, 

multivariate regression is used to predict chemical activity of interest based on the 

relationship between specific response and corresponding data generated by 

instruments such as Mass Spectrometer, Gas Chromatogram and Nuclear Magnetic 

Resonance (NMR) Spectrometer as well as the information extracted from molecular 

structure in the area of drug design as employed in this research.  Examples of 

regression methods commonly used in chemometrics are MLR and PLS.  In addition, 

new regression techniques have been introduced for instance Support Vector 

Regression (SVR) that based on Vapnik's concept of support vectors (Brereton and 

Lloyd, 2010; Smola and Schölkopf, 2004). 

Regression methods discussed previously are known as single block 

approaches that simply relates two blocks of data i.e. response and variable blocks.  

Interestingly, these techniques can be further expanded involving more than two 

blocks of data using multiblock methods such as MBPLS.  In this study, typical 

single block regression methods such as PLS has been utilized to measure the 

correlation of any two blocks together with the more advanced multiblock methods 

to find the correlation of more than two blocks of data with extra information on 
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common trends and possible connection among the blocks.  In addition, numerical 

techniques or indicators were used to investigate or measure the trends or relative fit 

between two blocks of data include Mantel Test, Rv coefficient, Procrustes analysis 

and Monte Carlo simulation. 

Pattern recognition involves finding similarities and differences between 

chemical samples based on measurements made on the samples and can be divided 

into two parts that are supervised pattern recognition and unsupervised pattern 

recognition or cluster analysis.  The latter is used to discover patterns in complex 

data sets or group similar objects together.  Classification which is one of the main 

focus in this research falls under the category of supervised pattern recognition 

(Dunn III and Wold, 1980) that determines whether the samples can be related to 

groupings with the aim to classify the unknowns (Brereton, 2009).  This can be 

achieved by using models developed from training set.  Basically, there are two types 

of classification which are linear that use statistical methods such as Linear 

Discriminant Analysis (LDA), Regularised Discriminant Analysis (RDA) and non-

linear or machine learning methods like k-Nearest Neighbour (kNN) and Support 

Vector Machine (SVM).  In short, multivariate analysis was performed in this study 

to extract meaningful information efficiently from the data. 

1.4 Problem Statement 

Generally, QSAR methodologies are only effective for QSAR development 

when applied to structurally similar analogues data set.  The larger structural 

variation of QSAR training set, constructing good QSAR model becomes harder.  As 

a results, further application of QSAR models in screening very large chemical 

databases can probably be troublesome in any QSAR studies.  Single QSAR model 

in high dimensional descriptor space cannot describe structure-activity correlations 

within a large database as well as unsuitable to represent large diverse data set of 

compounds.  Instead, multiple QSAR models that consists of different combination 
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of variable selection and model building should potentially be taken into 

consideration.  Moreover, several models with different combination of descriptors 

could also help to understand the anti-malarial characteristic of artemisinin 

compounds. 

The choice of appropriate classification methods for certain data set is usually 

highlighted in chemometric research since different type of data structure may 

require different type of classifier and no classification method is superior and 

applicable to all data set.  Even nonlinear approaches that are capable of producing 

complex boundaries especially for complex data set unfortunately not a direct 

indication of its superiority since it has higher tendency of over-fitting.  Therefore, 

comparison between several classification techniques is critical to determine the best 

method for a particular data set.  The challenge in attempting to find the best 

classifiers for the data set become more complicated as other variables should also be 

taken into consideration.  Several types of data splitting and data pre-processing 

methods have been selected and compared simultaneously besides changing the 

number of Principal Components (PCs) accordingly.  Hence, this research on 

classification should produce not only the best method of classification but also the 

best pre-processing and data splitting techniques for artemisinin data set as well as 

reasonable number of PCs with minimum risk of over-fitting. 

Since the number of descriptors generated by DRAGON software are 

significantly large and variety, it is needed to block them into several meaningful 

groups based on the types of structures they represent prior to building model. 

According to Zarzo (2004), PLS models with variable reduction often removes 

information, but splitting up the variables into a number of blocks and employing 

multiblock methods like Multiblock PLS and Consensus PCA not only analyze 

several blocks simultaneously, but also provide more information on the correlation 

and common trends between blocks.  Hence, the influence of each group of 

descriptor variables on each property can be studied separately.  Moreover, extra 

information can be obtained from specific parts of the block.  In addition, the 

relationship between blocks can also be analysed as well resulting in easier 
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interpretation of the data where all the indicators used should be consistent and 

parallel with the significance test.  The reliability of multiblock approach compared 

to single block approach will be determined in this research.  The multiblock analysis 

is expected to provide the overall picture of the model and data involved comparable 

to ordinary PLS method which has been widely used in QSAR research in terms of 

time and complexity.  

1.5 Research Objectives 

The main goal of this research is to study the structure-activity relationship of 

selected data sets and develop several models based on various combinations and 

advanced methods in chemometrics and hence subjected to relevant applications in 

chemistry.  Therefore, the thesis can be divided into three main parts with the 

following major objectives corresponding to each category.  The first objective of 

this research is to develop robust QSAR regression models applicable to high 

dimensional data (artemisinin data set) that are stable and predictive both internally 

and externally so as to correlate biological activity of chemical compounds in natural 

products with their structural characteristics.  Consequently, these multiple computer 

models will be used to predict activity of new compounds and screen a large library 

of compounds in large database to discover or identify new compounds with 

specialized properties (anti-malarial agents). 

The second objective is to develop and compare the performance of four 

types of classification models on artemisinin data set using different data pre-

processing and data splitting methods at different number of PCs.  Consequently, the 

most suitable method of data pre-processing, data splitting and efficient classification 

model for artemisinin data set can be determined.  Thus, the selected binary 

classification model could predict accurately the anti-malarial activity of artemisinin 

directly from their molecular structures. 



10 

 

The last objective is to develop Multiblock PLS models and Consensus PCA 

on Polychlorinated Diphenyl Ethers (PCDEs) data set using three descriptor blocks 

and one property block.  The performance of these multiblock methods will be 

compared to frequently used single block method that is PCA and PLS.  At the same 

time, the similarity and correlation between the blocks will be investigated using 

three different similarity measures in order to determine common trends in these data 

and their level of influence on activity block. 

1.6 Scope of Study 

This research is based on 2 types of data sets.  The first data set consists of 

197 artemisinin compounds with anti-malarial activity measured as log RA (relative 

activity) (Avery et al., 2002).  The data set has been used in development of QSAR 

models and database mining.  The same set of compounds was employed in the study 

of data pre-processing and data splitting for classification.  The second data set was 

subjected to building multiblock models.  It consists of 107 PCDEs compounds with 

three properties that are log PL (Pa, 25°C), log KOW (25°C) and log SWL (mol/L, 25°C) 

(Yang et al., 2003). 

The descriptors used in this study should represent the molecular structure  

accordingly and should be relevant to describe the activity being studied as well as 

can be processed rapidly.  Therefore, various types of descriptors generated by 

DRAGON descriptor generator (Todeschini et al., 2006) were used and can be 

categorized according to their dimensional property ranging from 0-dimensional to 

3-dimensional descriptors.  The study on development of QSAR models was split 

into two parts where the first part includes 3D descriptors while the other part 

exclude 3D descriptors for database mining purpose.  Similarly, the study on 

classification only utilized 2D descriptors.  On the other hand, all types of DRAGON 

descriptors have been used in the multiblock study where the descriptors were 

classified into three groups based on their dimensional property.  The first block 
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consisted of combination of 0D and 1D block while the other two blocks consisted of 

2D descriptors and 3D descriptors. 

This first part of structure-activity study focused on the development of 

QSAR models that correlate biological activity which is anti-malaria and chemical 

structures of artemisinin compounds.  Genetic algorithm (GA) and forward stepwise 

were incorporated into the feature selection routine combined with regression tools 

namely Partial Least Square (PLS) and Multiple Linear Regression (MLR) in QSAR 

modelling.  Mathworks Matlab 7.5 (2007) was used as the platform to build the 

QSAR models together with the latest version of PLS Toolbox 5.2.  The resulting 

QSAR models were applied to mining chemicals in large database ("National Cancer 

Institute (NCI) Database ") for potentially active compounds. 

In the classification research, four types of linear and nonlinear methods of 

classification have been used and compared with respect to artemisinin data set.  The 

selected techniques were Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Linear Vector Quantization (LVQ) and Support 

Vector Machine (SVM).  Their performances were evaluated in terms of percentage 

values using percent correctly classified of both training and test set as well as 

illustrated graphically using PCA and boundary plot.  They were measured and 

recorded at different principal component (PC) number ranging from 1PC to 20PC.  

At the same time, data pre-processing that involved row scaling, standardization and 

mean centring had been investigated and the most suitable one has been identified for 

the data set.  Besides that, Duplex and Kennard-Stone methods of data splitting had 

been employed and compared in this study. 

Basically, the scope of multiblock study can be categorized to three different 

segments.  The first part includes finding the correlations between the three 

descriptor blocks and a property block.  Three types of indicators have been utilized 

to evaluate the similarities that were Mantel test, Rv coefficient and Procrustes 

analysis together with Monte Carlo simulation as significance test.  The subsequent 

work incorporated both single block method and multiblock method and their results 
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were analysed and compared.  The second segment dealt with the visualization of the 

data set using PCA and CPCA methods.  Next, the third part of the work involved 

building PLS model of each block and consequently, the multiblock PLS of all the 

blocks.  Two types of multiblock model i.e. MBSS and MBBS had been employed in 

this work and their performance were also compared.  

1.7 Significance of Study 

The main significance of this research is to develop an improved method to 

discover new potentially active compounds with efficient QSAR modelling along 

with significant improvement in prediction of QSAR models.  The approach in 

QSAR modelling should be applicable to diverse data set and other large database.  

In this study, data mining method has been implemented in the QSAR studies and the 

outcome is new potential anti-malarial compounds. 

Another potential significance is in the utilization of natural products to 

develop anti-malarial agents and thus, successful development of new agents will 

increase the value of natural resources.  As discussed earlier, there is an urgent need 

to develop effective agents against malaria and findings from this study can be 

fanned out in the production of new drugs particularly anti-malarial agents in 

pharmaceutical industries. 

The significance of this QSAR study will be applicable to several industries 

especially pharmaceutical and biotechnological industries.  The method can be 

extended and utilized in a wide variety of available experimental data sets with 

different biological activity or for a wider class of application.  As a result, the cost 

and time in the development of new drugs will be minimized once the method can be 

proven to be able to select higher percentages of bioactive compounds as compared 

to conventional methods.  The outputs expected from this research include 

methodology for building QSAR models and discovery of new compounds with anti-
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malaria activity.  A successful implementation of this methodology would lead to an 

alternative way to generate and screen potential drug candidates. 

The performance of data splitting methods and classification models has been 

evaluated using the percentage of correct classification.  It enhances the significance 

of this study as the best combination of data pre-processing, data splitting and 

classification model for artemisinin data set can be identified.  Hence, the simple 

classification scheme that categorized the compounds as active and inactive could be 

employed to prioritize compounds to be tested with in vivo and in vitro assays and to 

determine the possible activity in newly produced chemicals or in other words could 

also be used as a practical tool for the rapid screening of potential anti-malarial 

agents.  At the same time, the consequences of increasing number of PCs on the 

classification models will be observed and this pattern can be used to determine the 

reliability of the model and potential risk of over-fitting.  Thus, the same framework 

can be applied to other data sets and subsequently produce better classification 

results. 

The novelty that can be found in the study on PCDEs is the implementation 

of multiblock methods.  Based on previous literatures, the study on PCDEs are 

limited to single block method analysing only single property at a time.  In this study, 

several properties of PCDEs can be modelled simultaneously and the importance of 

each category of descriptors can be assessed.  Thus, the overall picture of properties 

and descriptors relationship can be illustrated and compared in a single analysis.  

Furthermore, time taken to analyze the data can be reduced significantly. 

1.8 Layout of the Thesis 

In general, the thesis is organized into seven main chapters.  The introductory 

chapter begins with the discussion on the background of three main areas included in 

this research that are QSAR and data mining, classification and multiblock QSAR 
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followed by their respective problem statements and research objectives.  In addition, 

the scope and significance of the study have been presented as well. 

The next chapter, namely literature review discusses and analyzes specific 

areas or issues through research, summary, classification and comparison of prior 

research studies and literatures.  This section focuses on important topics pertinent to 

this study which include QSAR, descriptors, feature selection, model development, 

validation, data mining, classification and multiblock QSAR along with the overview 

of artemisinin and PCDEs data sets. 

Chapter 3 presents detailed description of the chemometric methods used 

throughout the study.  The development of QSAR models and data mining performed 

using genetic algorithm and forward stepwise combined with PLS and MLR methods 

have been explained in detail.  Besides that, techniques on model validation and data 

mining have been discussed as well.  The subsequent study utilized four types of 

classification (i.e. LDA, QDA, SVM and LVQ) and two data splitting methods (i.e. 

Duplex and Kennard-Stone).  The last part of this research adopted four types of 

similarity measures to measure the similarity correlation between blocks of 

descriptors together with the development of multiblock PLS models. 

Results and discussion are divided into three chapters. Chapter 4 presents the 

results of development QSAR models from artemisinin data set followed by the 

application of the models to search for new compounds in database mining.  Then, 

chapter 5 discusses the results of classification of artemisinin data set using four 

classifiers and two data splitting methods as well as four conditions of data pre-

processing.  The results were evaluated and compared in terms of percent correctly 

classified of training and test set. 

The application of multiblock methods on PCDEs data set is described in 

Chapter 6.  The data set consisted of four blocks and their correlations were assessed 

using Mantel test, Procrustes analysis and Rv coefficient.  The single block method 
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like PCA and PLS were then compared with the multiblock method such as 

Consensus PCA (CPCA) and Multiblock PLS. 

Finally, chapter 7 concludes the thesis with the brief discussion and summary 

of the results from each topic or analysis of the research.  It highlights the novelty of 

the research findings, achievement and contribution of this study.  In addition, the 

limitations and some suggestions for future research are also discussed. 
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