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ABSTRACT 

 

 

 

 
The objective of this study is to develop polyacrylonitrile (PAN)-based hollow fiber 

ultrafiltration (UF) membranes with improved anti-fouling properties for wastewater 

treatment. The prepared membranes were characterized with respect to their morphological 

structure, surface chemical composition, surface roughness, and hydrophilicity to investigate 

the impact of the membrane properties on the separation and anti-fouling performance. In 

the first stage of this study, PAN-based hollow fiber membranes incorporated with polyvinyl 

alcohol (PVA) were fabricated. Experimental results indicated that the resultant membranes 

demonstrated a trade-off between their separation and anti-fouling performances. Therefore, 

for the second stage, PAN-g-PVA graft copolymers of different properties (i.e. CP5, CP10 

and CP15) were synthesized via ceric (Ce
(IV)

)-initiated free radical polymerization by using 

different acrylonitrile (AN) monomer weights (5, 10, 15 g of AN per 10 g of PVA) and 

incorporated in the hollow fiber membranes. Obtained results revealed that the copolymer 

properties (i.e. number of PVA repeating units (nPVA)) significantly influenced the overall 

membrane properties. The highest pure water flux (179 L/m
2
.h.bar) was achieved by the 

membrane incorporated with graft copolymer of the highest nPVA of 70 due to the increase in 

hydrophilicity, pore size and porosity, and surface roughness. Thirdly, the investigation on 

the effect of the graft copolymer compositions in dope solution on the membrane properties 

and performances was carried out by using the best performance graft copolymer (CP10). 

The membrane properties and performance were significantly altered using the different 

copolymer composition. Membranes with the highest copolymer content demonstrated the 

highest water flux of 297 L/m
2
.h when tested at 1 bar which attributed to the changes in the 

membrane morphology, surface roughness and hydrophilicity. Overall, it was summarized 

that the UF performance and fouling property were mostly affected by the pore structure of 

the membrane and partly by the membranes physical properties (i.e. degree of PVA surface 

coverage and surface roughness) during filtration of bovine serum albumin (BSA), albumin 

from chicken egg white (EA) and trypsin. In the final stage, three different membranes; CP5 

(incorporated with graft copolymer with nPVA of 68 at PAN:PAN-g-PVA weight ratio of 

90:10), CP10-10 (incorporated with CP10 graft copolymer with nPVA of 25 at PAN:PAN-g-

PVA weight ratio of 90:10) and CP10-5 (incorporated with CP10 graft copolymer with nPVA 

of 25 at PAN: PAN-g-PVA weight ratio of 95:5), which demonstrated among the highest 

flux recovery during proteins filtration, were subjected to a feasibility study for natural 

rubber (NR) effluent treatment. The highest flux recovery of 84% could be achieved by 

CP10-10 membrane using hydraulic cleansing and its properties are summarized as follows: 

62.73º contact angle, 34.3% degree PVA surface coverage, 43.5 nm root mean square 

surface roughness (Rq), 30-72 nm pore size and 23% porosity. It can also be inferred that the 

pore size and pore size distribution gave profound influence on the membrane fouling 

resistance during NR filtration. In addition, all the membranes showed remarkable 

performances in reducing turbidity (> 99%) and colour (>97%). Reduction of 68-70% total 

proteins, 29-38% chemical oxygen demand (COD), 14-32% total organic carbon (TOC), 8-

11% total dissolved solid (TDS) and 7-8% conductivity were achieved by the membranes 

depending on the membrane properties.  
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ABSTRAK 

 

 
 

 

Objektif kajian ini adalah untuk membangunkan membran turasan-ultra (UF) 

gentian geronggang berasaskan poliakrilonitril yang mempunyai sifat anti-kotoran yang 

lebih baik untuk rawatan air sisa. Membran yang disediakan dianalisa berdasarkan struktur 

morfologi, komposisi kimia permukaan, kekasaran permukaan, dan kehidrofilikan untuk 

mengkaji kesan sifat-sifat membran terhadap prestasi pemisahan dan anti-kotoran. Pada fasa 

pertama kajian ini, membran gentian geronggang berasaskan PAN yang dimasukkan dengan 

polivinil alkohol telah disediakan. Keputusan eksperimen menunjukkan  membran terhasil 

menunjukkan kesan gangguan keseimbangan di antara prestasi pemisahan dan anti-kotoran. 

Oleh itu, pada fasa kedua, kopolimer cangkuk PAN-g-PVA (cth. CP5, CP10, CP15) yang 

mempunyai sifat-sifat berbeza telah disintesis melalui pempolimeran radikal bebas yang 

dimulakan oleh serik (Ce
(IV)

) dengan menggunakan berat monomer akrilonitril (AN) yang 

berbeza dan dimasukkan ke dalam membran gentian geronggang. Keputusan menunjukkan 

sifat-sifat kopolimer (cth. nombor unit-unit berulang PVA (nPVA)) mempengaruhi 

keseluruhan sifat-sifat membran dengan ketara. Fluks air tulen tertinggi (179 L/m
2
.jam) telah 

dicapai oleh membran yang dimasukkan dengan kopolimer cangkuk dengan nPVA sebanyak 

70 disebabkan oleh peningkatan kehidrofilikan, saiz liang dan keliangan, dan kekasaran 

permukaan. Ketiga, kajian tentang kesan komposisi kopolimer cangkuk di dalam larutan dop 

terhadap sifat-sifat dan prestasi membran telah dijalankan dengan menggunakan kopolimer 

cangkuk yang mempunyai prestasi terbaik (CP10). Sifat-sifat membran dan prestasinya 

berubah dengan ketara dengan komposisi kopolimer yang berbeza. Membran dengan 

kandungan kopolimer tertinggi menunjukkan fluks air tulen tertinggi sebanyak 297 L/m
2
.jam 

apabila diuji pada 1 bar disebabkan oleh perubahan morfologi membran, kekasaran 

permukaan dan kehidrofilikan. Keputusan keseluruhan meringkaskan bahawa prestasi UF 

dan sifat anti-kotoran kebanyakannya bergantung kepada struktur liang membran dan 

sebahagiannya terkesan daripada sifat fizikal membran (cth. darjah liputan PVA pada 

permukaan dan kekasaran permukaan semasa turasan albumin daripada serum lembu (BSA), 

albumin daripada telur putih ayam (EA) dan tripsin. Pada fasa terakhir, tiga membran; CP5 

(dimasukkan kopolimer cangkuk dengan 68 nPVA pada nisbah berat PAN:PAN-g-PVA 

90:10), CP10-10 (dimasukkan dengan kopolimer cangkuk CP10 dengan 25 nPVA pada nisbah 

berat PAN:PAN-g-PVA 90:10) dan CP10-5 (dimasukkan dengan kopolimer cangkuk CP10 

dengan 25 nPVA pada nisbah berat PAN:PAN-g-PVA 95:5), yang telah menunjukkan di 

antara pemulihan fluks tertinggi semasa turasan protein diuji untuk kajian kemungkinan 

untuk rawatan sisa buangan getah asli (NR). Pemulihan fluks air tertinggi sebanyak 84% 

boleh dicapai oleh membran CP10-10 yang mempunyai sifat-sifat seperti berikut: 34.3% 

darjah liputan permukaan PVA, 43.5 nm punca kuasa dua kekasaran permukaan, 30-72 nm 

saiz liang dan 23% keliangan. Boleh disimpulkan bahawa saiz liang dan agihan saiz liang 

mempengaruhi rintangan kotoran semasa turasan NR. Sebagai tambahan, kesemua membran 

menunjukkan prestasi yang sangat baik dalam menurunkan kekeruhan (>99%) dan warna 

(>97%). Penurunan sebanyak 68-70% jumlah protein, 29-38% keperluan oksigen kimia 

(COD), 14-32% jumlah karbon organik (TOC), 8-11% jumlah pepejal terlarut (TDS) dan 7-

8% konduktiviti telah dicapai bergantung kepada sifat-sifat membran.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Membrane Separation Processes 

 

 

Over the past decade, declining water quality is inevitably a growing global 

concern. Increasing global population, evolving urbanization, and accelerating 

economic activities are among the leading factors in the degradation of water quality. 

Major pollutants sources which include domestic sewage, industrial effluent, and 

agriculture runoff have been known to release notorious anthropogenic pollutants to 

the aquatic system. This is most probably due to poor treatment and management of 

the effluents, which adversely posing serious threat to environment and health 

(Kumar Reddy and Lee, 2012). As a result, this deprivation in water quality will 

consequently cause water scarcity. By year 2025, it is expected that water scarcity 

will become a major issue when global water consumption would reach to 3800 

km
3
/year (Jury and Vaux, 2005). 

 

 

To address the increasing need of clean water, various water treatment 

technologies have been proposed and implemented from small to big-scale. 

However, conventional treatment methods are always hampered by the lack of 

skilled personnel, expensive cost, long retention time, requirement of ample land, 

and also failure to meet safe discharge limits (Mohammadi et al., 2010). In this 

regard, membrane technology is a promising candidate in wastewater treatment due 

to advantages offered by this process which include high efficiency, ease of 

operation, low operating cost, and also low energy requirements (Baker, 2004). 

Recently, membrane technologies have been greatly progressed in various industrial 
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processes and have shown very promising outcomes in various wastewater 

treatments.  

 

 

In general, membrane is a selective barrier which allows one selective 

component of a mixture to pass through while rejecting others (Baker, 2004). In this 

regard, pressure-driven membrane processes such as ultrafiltration (UF), 

microfiltration (MF), and reverse osmosis (RO) have received significant attention 

due to low operating and maintenance cost, high efficiency, low energy requirement, 

and also ease of operation (Chen et al., 2011).  

 

 

Of the membrane technologies used in water and wastewater treatment, low 

pressure driven membranes (MF and UF) are commonly used to remove 

microorganisms and colloidal particles present in the wastewater. Since  mid-1990s, 

the installations of UF and MF have increased in capacity from ca. 1000 m
3
/day in 

1997 to 10,000,000 m
3
/day in 2003 (Kennedy et al., 2008). The UF and MF have 

also been continuously developed in terms of their modules, materials and 

characteristics at both laboratory and commercial scale (Baker, 2004). Currently, UF 

is accepted as a reliable and efficient technology for many domestic and industrial 

processes. In fact, UF membrane technology has been also widely applied in water 

and wastewater treatments. It is believed that tougher environmental legislation and 

also water scarcity issue are probably the main factors behind the rapid development 

of UF membrane in wastewater treatment.  

 

 

 Currently, low-pressure driven UF membrane process has been proposed as a 

potential alternative for various wastewater treatments. However, better 

understanding on the improvement of the membrane fouling resistant and 

optimization of the membrane properties for filtration of heavily polluted effluent is 

of crucial importance in order to achieve desired separation and anti-fouling 

performance. Although great deals of studies have been reported so far in 

fundamental and practical manners, material development of UF membrane 

particularly to improve fouling resistance is still inadequate.  
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1.2 Problem Statements 

 

 

 UF membrane has been widely applied in various separation processes. 

However, it should be emphasized that reports addressing fouling issue of the UF 

membrane particularly during filtration of heavily polluted effluent treatment are 

scarcely reported in open literature (Delgado Diaz et al., 2012; Hilal et al., 2005). 

Susanto and Ulbricht (2009b) pointed out that several factors such as the use of feed 

pre-treatment, advanced membranes and module design, as well as process condition 

optimization could enhance UF membrane performance. Another important factor 

which could play a significant role in UF membrane fouling is the membrane 

material itself (Susanto and Ulbricht, 2009b).  

 

 

Polyacrylonitrile (PAN) is a common material used to fabricate UF 

membrane owing to its high chemical stability, hydrophilicity and high solubility to 

common solvents. Although PAN is hydrophilic in nature, several modification 

methods have been proposed to further improve its anti-fouling resistance and 

permeation properties (Lohokare et al., 2011; Jung, 2004). Blending the dope 

solution with hydrophilic components is the simplest modification method, yet 

efficient, to enhance a membrane morphological properties as well as its filtration 

performance (Alsalhy, 2012; Amirilargani and Mohammadi, 2012). For example, Li 

et al. (2010) reported that addition of PVA to polyvinylidene fluoride (PVDF) via 

blending method leads to improvement of the membrane surface hydrophilicity, pure 

water flux as well as the membrane anti-fouling properties. The enhanced 

performance of the membrane is attributed to hydrophilic nature of PVA, revealing 

the influential role of PVA in improving both filtration and anti-fouling performance. 

Although a great numbers of studies have reported on the viability of blending 

method in improving properties of membranes, several drawbacks such as 

compatibility problem, leaching out of the additive during phase inversion process 

and/or filtration require further address (Chen et al., 2011; Su et al., 2009).   

 

 

To address the currently existing problems associated with blending 

approach, blending with amphiphilic copolymers is introduced. Such blending have 

received considerable attention due to its unique self-assembly behaviour that can 
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impart excellent hydrophilicity to membrane and enhance fouling resistance 

(Asatekin et al., 2007; Liu et al., 2009; Nie et al., 2011). However, only several 

reports are found available in open literature for PAN membrane modification with 

amphiphilic copolymer. 

 

 

 Poly(vinyl alcohol) (PVA) is a hydrophilic polymer commonly used in 

membrane fabrication. It possesses excellent film forming ability, and also excellent 

physical and chemical stability, which have made it as a good choice for membrane 

fabrication (Na et al., 2000; Zhang et al., 2006; Ahmad et al., 2012). However, only  

few studies have been reported on the modification of UF membranes with PVA, 

probably due to complicated and difficult preparation procedures (Gohil and Ray, 

2009; Guo et al., 2007). Nevertheless, it is necessary to fully understand the impact 

of modification using PVA on UF membrane properties and performances. 

 

 

In view of this, efforts have been made to investigate the potential of PAN-

based hollow fiber UF membranes incorporated with PAN-g-PVA amphiphilic 

copolymers to treat heavily polluted NR effluent. It is noted that despite those 

mentioned advantages of UF membrane, the practical application of UF for NR 

effluent treatment is scarcely reported in literature. It is also acknowledged that the 

presence of various toxic and hazardous constituents in NR effluent has led to the 

searching of new and innovative methods to produce quality-complied and safely 

dischargeable NR effluent. In this regard, various treatment methods such as 

biological methods, chemical methods and also integrated methods have been 

implemented to treat the NR effluent. However, it remains challenging to develop 

treatment methods that would be cost-effective, simple in operation, environmentally 

friendly and also efficient (Mohammadi et al., 2010). In Malaysia, mostly the 

wastewater is treated by biological methods, but results have shown that this method 

alone is not effective enough to completely degrade all the pollutants to acceptable 

safe level of discharge. Besides, it also suffers from several drawbacks such as 

unpleasant odour, large land area requirement, high cost, high retention time and 

sludge problem (Chaiprapat and Sdoodee, 2007; Rosman et al., 2013). Such 

deficiencies have prompted the seeking of more viable and innovative approaches to 

achieve higher separation efficiencies for various pollutants.   
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Thus, the ultimate goal is to understand the fouling behaviour and 

performance of the UF membranes and also the removal and reduction of organic 

and inorganic compounds during direct filtration of heavily polluted NR effluent. It 

is also essential to understand the correlation between the membranes properties (i.e. 

morphological structure, surface chemical composition, surface roughness, and 

hydrophilicity) and the membrane anti-fouling along with separation performance. In 

addition, present study is to provide greater understanding and highlight underlying 

problems associated with the membrane preparation which will contribute important 

insight towards the development of effective membrane for wastewater treatment. 

 

 

 

 

1.3 Objectives of the Study 

 

 

 Based on the aforementioned problem statements, the objectives of the 

current study are outlined as follows: 

 

 

(i) To study the effect of PVA concentration on the membrane separation 

and anti-fouling properties of PAN-based hollow fiber membranes, 

 

 

(ii) To investigate the correlation between amounts of acrylonitrile (AN) 

monomer added during PAN-g-PVA graft copolymer synthesis and 

the PAN-based membrane properties and performance, 

 

 

(iii) To study the effect of PAN-g-PVA composition on the properties and 

performance of PAN-based hollow fiber membranes, and 

 

 

(iv) To investigate the performance of the developed membranes to treat 

heavily polluted NR effluent 
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1.4 Scopes of the Study 

 

 

 In order to achieve the listed objectives, several scopes of study have been 

identified as follows: 

 

(i) Synthesizing PAN-g-PVA graft copolymer from three different AN 

monomer weights of 5, 10, 15 g per 10 g of PVA via Ce
(IV)

-initiated free 

radical polymerization. 

 

(ii) Characterizing the developed PAN-g-PVA copolymer by 
1
H nuclear 

magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) 

spectroscopy and gravimetric analysis. 

 

(iii) Formulating dope solution of hollow fiber UF membranes using different 

PVA compositions; PAN:PVA ratio of 95:5, 90:10, 85:15, and 80:20 at fixed 

polymer weight of 12 wt%. 

 

(iv) Formulating dope solution of hollow fiber UF membranes using three 

different PAN-g-PVA copolymers of different properties (prepared from 

different AN monomer weight during synthesis; 5, 10, 15 g of AN per 10 g of 

PVA) at fixed polymer weight of 12 wt%. 

 

(v) Formulating dope solution of hollow fiber UF membranes using best 

performance PAN-g-PVA copolymer (CP10) at three different copolymer 

composition; PAN: PAN-g-PVA ratio of 95:5, 90:10, and 80:20 at fixed 

polymer weight of 12 wt%. 

 

(vi) Fabricating hollow fiber UF membranes by dry-wet spinning process at 

fixed-spinning conditions. 

 

(vii) Characterizing the chemical and physical properties of the prepared 

membranes using field emission scanning electron microscope (FESEM), 

scanning electron microscope (SEM), atomic force microscope (AFM), X-ray 

photoelectron spectrometer (XPS), attenuated total reflection infrared (ATR-

IR) spectroscope, thermal gravimetric analysis (TGA), differential scanning 

calorimeter (DSC), and contact angle analyzer. 



7 

 

(viii) Evaluating performance of the prepared membranes in terms of water 

permeation flux, proteins rejection and also anti-fouling performance during 

proteins filtration, i.e. BSA, EA and trypsin. 

 

(ix) Identifying the ideal membranes for direct UF of NR effluent treatment based 

on their anti-fouling properties during proteins filtration. 

 

(x) Evaluating performance of the hollow fiber membranes in terms of removal 

and reduction of organic and inorganic pollutants from NR effluent. 

 

(xi) Performing membrane fouling analysis during direct UF of heavily polluted 

NR effluent. 

 

 

 

 

1.5 Rational and Significant of the Study 

 

 

This study aims to impart better understanding on the development of hollow 

fiber membranes with enhanced anti-fouling properties for wastewater treatment. It 

is acknowledged that the membrane properties (i.e. surface roughness, 

hydrophilicity, pore structure) are fundamentally responsible in the extent of fouling 

and separation performance. Thus, by identifying the ideal properties of UF 

membrane, membrane with excellent anti-fouling characteristics and performances 

could be fabricated. In order to improve the membrane properties, blending with 

hydrophilic additive could offer a possible route to produce highly effective 

membranes with low fouling potential and excellent separation performance. Thus, 

efforts have been made to investigate the impact of direct blending with PVA in UF 

membrane properties and performance. To the best of my knowledge, none of such 

research has been conducted to evaluate the performance of blend membrane made 

of PAN/PVA. Additionally, amphiphilic copolymers has great potential to be used in 

making membrane with excellent anti-fouling properties, mainly due to its unique 

self-assembly behaviour that could impart excellent membrane hydrophilicity and 

subsequently enhance fouling resistance. Therefore, efforts have also been dedicated 

to identify the impact of copolymer bearing hydrophilic PVA (PAN-g-PVA) on the 

hollow fiber membrane properties and performance. No relevant study has been 
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conducted so far to investigate the behaviour and performance of novel PAN/PAN-

g-PVA particularly during direct filtration of heavily polluted effluent. Realizing the 

important roles of UF membranes for various industrial processes, particularly for 

wastewater treatment, efforts are made to investigate the membrane fouling 

behaviour during direct UF process of heavily polluted NR effluent. It is, thus, 

expected that outcomes from this study would be beneficial to further understand on 

the utilization of UF membrane for heavily polluted effluent treatment, which could 

offer great prospect for wider application of UF membrane.  

 

 

 

 

1.6 Organization of the thesis 

 

 

This thesis consists of 8 chapters. Chapter 1 outlines brief information on the 

membrane separation technology and the potential application of UF membrane for 

NR effluent treatment. Following this, problem statements, objectives and scopes of 

study are stated in detail. 

 

 

Chapter 2 provides background information of UF membrane which includes 

the brief introduction of UF, materials used, modules, operation modes, 

configurations, and also fouling mechanism are elaborated. Then, attention is paid on 

the amphiphilic copolymers for UF membrane preparation by addressing the surface 

segregation mechanism, fouling mitigation by amphiphilic copolymer and also 

review on the recent studies of UF membranes fabrication using amphiphilic 

copolymer. After that, detailed discussion on UF membrane application for 

wastewater treatment is highlighted. Then, the potential application of UF membrane 

in NR effluent treatment which includes the background information of NR and NR 

industry as well as the characteristics of NR effluent are also provided. Additionally, 

an overview of treatment methods that have been recently developed to treat NR 

effluent is also highlighted. Chapter 3 will focus on the experimental methods and 

characterizations that were used in this study. The analysis methods of membrane 

performance and anti-fouling properties are also highlighted in detail.  
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Chapter 4 discusses the characterization and performances of PAN-based UF 

membranes incorporated with PVA as additive. The fabricated hollow fiber 

membranes were investigated in terms of their morphological structure, glass 

transition temperature, and thermal stability using FESEM, DSC and TGA. The 

surface properties of the membranes in terms of hydrophilicity and surface 

roughness were then characterized by contact angle and AFM analysis. The filtration 

performance by means of water permeation flux and BSA rejection are also 

presented in this chapter. In addition, details discussion on the anti-fouling 

performance of the membranes upon the addition of PVA is also addressed. The 

correlation between membrane properties and the membrane separation and anti-

fouling performance is also discussed in detail. 

 

 

Chapter 5 discusses on the fabrication, characterization and anti-fouling 

performance of PAN hollow fiber membranes incorporated with graft copolymer 

additive, prepared from different AN monomer weight during synthesis of PAN-g-

PVA via Ce
(IV)

- initiated free radical polymerization. The properties of the graft 

copolymers are presented in terms of their characterizations by using 
1
H NMR, FTIR 

and gravimetric analysis. Then, the hollow fiber membranes are discussed in great 

details in terms of their morphological structure, surface properties and also water 

permeation flux. Additionally, rejection and filtration performance during different 

proteins filtration (BSA, EA and trypin) are also included.  Discussion on the impact 

of incorporation of different copolymers prepared from different weight of AN 

monomer on membrane properties are also presented in this chapter. On the other 

hand, graft copolymer with enhanced properties and better performance for UF 

membranes is then presented in detail in Chapter 6. The impact of the graft 

copolymer composition on the UF membrane properties and performance is 

elaborated accordingly in this chapter.  

 

 

Chapter 7 presents the performance of three membranes with the highest anti-

fouling performance in the treatment of heavily polluted NR effluent. The developed 

membranes are discussed in terms of their efficiency in the removal of various 

organic and inorganic pollutants in the effluent; COD, TOC, turbidity, colour, total 

proteins, TDS and conductivity. In addition to this, the anti-fouling performance of 
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the membranes during direct UF of NR effluent is also included. Finally, the general 

conclusions of this study and recommendations for future research works in this field 

are drawn in Chapter 8. 
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