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ABSTRACT

Many problems in science and engineering require the solution of the Dirichlet
problem and Neumann problem with discontinuous coefficients. In this thesis, a
boundary integral equation method is developed for solving Laplace’s equation with
Dirichlet condition and Neumann condition with discontinuous coefficients in both
simply and multiply connected regions. The methods are based on a uniquely
solvable boundary linear integral equation with the Neumann kernel. For numerical
experiments, discretizing each integral equation leads to a system of linear equations.
The system is then solved using the generalized minimum residual method (gmres)
powered by the fast multipole method (FMM). After the boundary values of the
solution of the Dirichlet problem and the Neumann problem with discontinuous
coefficients in both simply and multiply connected regions are computed, the solution
of the problem at the interior points are calculated by means of the Cauchy integral
formula. The numerical examples presented have illustrated that the boundary
integral equation methods developed yield high accuracy. Then a method by using
these concepts is suggested for solving the mixed boundary value problem. The
method is based on converting the mixed problem to a Riemann-Hilbert problem with
discontinuous coefficients which is then reduced to two Dirichlet problems, one with
discontinuous coefficients and one with unbounded coefficients.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Solving elliptic problems with different types of boundary conditions are
unavoidable parts of computational physics and mechanics. There are many problems
that arise in engineering and science that require knowledge on Dirichlet boundary
value problem. Applications of Dirichlet boundary value problem exist in large number
in classical mathematical physics, such as potential of flow around airfoil, heat problem
in an insulated plate and electrostatic potential in a cylinder.

Physicists and engineers know about immense applications of such boundary
value problems, so formalization of these problems mathematically and obtaining
their solutions by using the most appropriate analytical or numerical method are their
concern. Since in general the problem cannot be solved in closed form, we have to
use the numerical methods to approximate the solution considered. There are many
known numerical methods. The common ones are the boundary integral methods, finite
elements methods and the finite difference methods that are used by many researchers
and also studied extensively.

A classical method for solving boundary value problems is the boundary
integral equation method. The classical boundary integral equations for boundary
value problems are the second kind Fredholm integral equations with the Neumann
kernel. These integral equations are derived by representing the solutions of the
boundary value problems as the potential of a single layer [1].

Boundary integral equations will be studied for the Dirichlet problem with
discontinuous coefficients at arbitrary simply connected regions as well as for multiply
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connected regions in this thesis. These integral equations are Fredholm integral
equations of the second kind such that the kernels are continuous.

1.2 Background of the Problem

The boundary integral equation method is a more direct approach that avoid
conformal mapping. Recently Wegman et al. [2] and Wegman and Nasser [3] have
developed two integral equations with the generalized Neumann kernel that can be
used to solve the solution of Riemann-Hilbert boundary value problem. This method
is based on earlier works in [2, 4, 5] related to the Riemann-Hilbert problem. The
relation between integral equation with the generalized Neumann kernel and Riemann-
Hilbert has been studied in these works. The interplay of generalized Neumann kernel
and conformal mapping has been investigated in [6, 7, 8, 9]. Generalized Neumann
kernel for solving the Riemann-Hilbert problem has been studied in [2, 3, 4, 5, 10].
Solving the mixed Dirichlet-Neumann boundary integral equation with generalized
Neumann kernel has been explained in [11, 12, 13]. Dirichlet and Neumann problem
with continuous coefficients and generalized Neumann kernel have been solved in [14,
15]. Nevertheless, these approach has not been used for solving the boundary value
problems involving first kind of the discontinuous coefficients.

1.3 Problem Statement

The research problem is to reformulate the Dirichlet boundary value problem
with discontinuous coefficients on bounded simply connected region as well as
on bounded multiply connected region into the form of Dirichlet problem with
continuous coefficients and then solve it by using integral equation method with the
generalized Neumann kernel. The research problem also includes Neumann problem
with discontinuous coefficients and finding a method for solving mixed boundary
value problem on simply bounded connected region based on reformulating mixed
boundary value problem into the form of Riemann-Hilbert problem with discontinuous
coefficients.
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1.4 Research Scopes and Objectives

1. To reformulate the Dirichlet condition with discontinuous coefficients on
bounded simply and multiply connected regions into the form of Dirichlet
problem with continuous coefficients.

2. To determine the integral equations related to the Dirichlet problem with
continuous coefficients and then solve it numerically by using the integral
equations with the Neumann kernel.

3. To solve Dirichlet boundary value problem with discontinuous coefficients by
using the obtained answer of Dirichlet boundary value problem with continuous
coefficients and compare it with some existing methods or with exact solutions.

4. To suggest a method for solving the mixed boundary value problem on bounded
simply connected region based on reformulating it to a RH problem with
discontinuous coefficients.

1.5 Simulation Tool

MATLAB is very powerful tool for doing computations mathematics, specially
in the case that our primary data are in the forms of vectors and matrices. It is
updated version of software such as Fortran and C/C++ for doing more complicated
calculation. For numerical computing, it includes a large number of mathematical
functions and toolbox. These powerful numerical capabilities are made in state-of-
the-art libraries and LAPACK and BLAS for linear algebra. By mixing these highly
advanced functions and toolboxes with additional leading-edge methods, MATLAB
affords us to gain a fast, robust, and wide collection of numerical routines available.
In addition, MATLAB allows us to customize existing algorithms and make our own
algorithms. In this thesis MATLAB R2011a has been used. All calculations were done
on Intel(R)Core(TM)i5 CPU M460@2.53GHz 2.53GHz Laptop.

1.6 Thesis Outline

This thesis consists of six chapters including this introductory chapter. Chapter
2 can be regarded as preliminaries with general introduction and formulation, historical
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background of the Dirichlet problem and brief review of the some current available
methods for solving the Dirichlet problem with discontinuous coefficients.

Chapter 3 explains some results that will be used for solving Dirichlet problem
with discontinuous coefficients in bounded simply connected region. First, some
preliminaries for solving Dirichlet problem with discontinuous coefficients will be
reviewed. Next, the integral equations will be derived and applied to solve this
problem. Finally, there will be some numerical examples to prove the accuracy of
the suggested method. Neumann problem with discontinuous coefficients will also be
discussed in this chapter.

Chapter 4 is motivated by extending the contents of Chapter 3 to solve the
Dirichlet problem with discontinuous coefficients in bounded multiply connected
region. First, some notations and auxiliary materials will be presented. Next, we
solve Dirichlet problem with discontinuous coefficients in bounded multiply connected
region. Finally, as in Chapter 3, there are some numerical examples to prove the
accuracy of the suggested method.

Chapter 5.3 includes a brief summary of the main results of thesis and some
suggestions for future works. Briefly, based on the contents of Chapters 3 and
4, a method will be presented to compute mixed boundary value problem in any
arbitrary simply connected region as the following orders: First, some introductions
about mixed boundary value problem shall be presented. Next, the mixed boundary
value problem will be re-changed to a Riemann-Hilbert problem with discontinuous
coefficients. Finally, this Riemann-Hilbert problem with discontinuous coefficients
will be solved by decomposing it into two Dirichlet problems, one with discontinuous
coefficients and another one that has coefficients with singularity.

Three appendices are attached in this thesis, Appendices A-C. Appendix A
presents the list of all papers that have been published and presented during the authors
candidature. Appendix B is about some facts related to Sokhotskyi formulas, Hölder
condition and Nyström method. In Appendix C, there are some MATLAB programs
in related to the some examples that are studied in this thesis.
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Berlin: Birkhäuser Boston. 2006.

31. Mikhlin, S. G. Integral Equations and their Applications to Certain Problems

in Mechanics Mathematical Physics and Technology. Armstrong: Pergamon
Press, London. 1957.

32. Muskhelishvili, N. I. Singular Integral Equations: Boundary Problems of

Function Theory and Their Applications to Mathematical Phys. Noordhoff.
1977.

33. Vekua, I. N. and Sneddon, I. N. Generalized Analytic Functions. vol. 29.
Pergamon Press Oxford. 1962.

34. Komatu, Y., Mizumoto, H. et al. On transference between boundary value
problems for a sphere. Kodai Mathematical Seminar Reports. Tokyo Institute
of Technology, Department of Mathematics. 1954, vol. 6. 115–120.

35. Martin, P. On the null-field equations for the exterior problems of acoustics.
The Quarterly Journal of Mechanics and Applied Mathematics, 1980. 33(4):
385–396.

36. Anh, F. K. Two approximate methods for solving nonlinear Neumann
problems. Ukrainian Mathematical Journal, 1988. 40(5): 527–532.

37. Sadiku, M. and Gu, K. A new Monte Carlo method for Neumann problems.
1996: 92–95.

38. Krutitskii, P. A new integral equation approach to the Neumann problem in



152

acoustic scattering. Mathematical Methods in the Applied Sciences, 2001.
24(16): 1247–1256.
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