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ABSTRACT 

 

 

 

 

Aggressive scaling of CMOS has led to higher and higher integration density, 

the higher performance of devices, low power consumption and more complex 

function. However, it will eventually reach its limit in future. As device sizes 

approach the nanoscale, new opportunities arise from harnessing the physical and 

chemical properties at the nanoscale. Carbon Nanotubes are considered as the most 

promising carbon nanostructure material is realizing the nanoelectronic transistors 

back in year 1991. The objective of this project is to create a modeling of next 

generation field effect transistors (CNTFET) to model the characteristics of the 

devices. Modeling of semiconductor devices is critical in understanding factors 

which may affect their performance. This allows greater understanding of the 

underlying physics and aids optimization in both materials and lowers development 

costs by reducing the time and effect between design and fabrication of working 

prototypes. The overall project is uses the concept of a Carbon Nanotube technology 

along with its application in Carbon Nanotube field effect transistors, physic of 

Carbon Nanotube, and quantum transport theory to create an equivalent universal 

SPICE model. Numerical simulation studies are carried out by using MATLAB 

program to understand the device physic and the performances of transistor are 

compared with conventional MOSFET. Further analysis has been made on changing 

some transistor parameter (for example the oxide thickness, carbon nanotube 

diameter and etc) to further understand what controls and how to improve the 

transistor performance. 
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ABSTRAK 

 

 

 

 

Pengskalaan peranti CMOS yang agresif terhadap skala nano telah membawa 

kepada peningkatan pelbagi faktor termasuk densiti integrasi, pencapaian prestasi 

peranti, kompleksiti fungsi dan penurunan kadar pengunaan kuasa. Akan tetapi, 

fenomena ini akan mencapai tahap di mana pengecilan skala tidak dapat lagi 

dijalankan. Pengecilan saiz peranti terhadap skala nano telah membangkitkan 

kaedah-kaedah untuk menaikkan lagi prestasi pada tahap skala nano secara fizikal 

and kimia. Nanotiub karbon dianggap sebagai bahan struktur nano yang terbaik 

dalam usaha merealisasikan transistor nanoelektronik pada tahun 1991. Objektif 

projek ini adalah untuk memodelkan ciri-ciri peranti transistor karbon nanotiub kesan 

medan generasi baru CNTFET. Pemahaman yang mendalam terhadap faktor-faktor 

adalah kritikal dalam pemodelan peranti semikonduktor yang mungkin mengubah 

tahap prestasi peranti tersebut. Dengan ini, pemahaman yang lebih mendalam dalam 

bidang fizik dan pengoptimasi bantuan dalam bahan dapat dicapai di samping 

mengurangkan kos dengan mengurangkan masa dan kesan di antara rekabentuk dan 

fabrikasi prototaip. Secara keseluruhan, projek ini menggunakan konsep teknologi 

karbon nanotiub dalam pengaplikasian dalam transistor karbon nanotiub kesan 

medan, sifat fizik karbon nanotiub dan teori kuantum pengangkutan untuk 

menghasilkan model SPICE yang setara. Simulasi telah dijalankan dalam MATLAB 

untuk memahami dengan dalam sifat fizik dan tahap pencapaian transistor 

berbanding MOSFET konvensional. Analisis yang lebih lanjut telah dijalankan 

dengan penukaran parameter transistor contohnya ketebalan oksida, diameter 

nanotiub karbon dan lain-lain untuk menyelidik faktor yang mengawal dan juga cara-

cara yang dilakukan untuk meningkatkan tahap prestasi transistor.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 This project proposes a ballistic carbon nanotube field effect transistor 

modeling with applying quantum transport concept and analyzing the output of the 

transfer characteristic (I-V characteristic) with different parameter on input and 

comparing the result with conventional MOSFET. In this chapter, we will present the 

background and research motivation, scopes of project. The chapter will end with 

outline of the project report.  

 

 

 

 

1.1 Background and Research Motivation 

 

 

The progress in silicon technology continues to outpace the historic pace of 

Moore's Law, but the end of device scaling now seems to be only 10-15 years away. 

Therefore, it is of intense interest to find new, molecular-scale devices that might 

complement a basic silicon platform by providing it with new capabilities - or that 

might even replace existing silicon technology and allow device scaling to continue 

to the atomic scale. As device sizes approach the nanoscale, new opportunities arise 

from harnessing the physical and chemical properties at the nanoscale. Chemical 
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synthesis, self-assembly, and template self-assembly promise the precise fabrication 

of device structures or even the entire functional entity. Quantum phenomena and 

dimensional transport may lead to new functional devices with very different 

power/performance tradeoffs. New materials with novel electronic, optical, and 

mechanical properties emerge as a result of the ability to manipulate matter on a 

nanoscale. It is now feasible to contemplate new nanoelectronic systems based on 

new devices with completely new system architectures, for examples: - nanotubes, 

anowires, molecular devices, and novel device concepts for nanoelectronics. 

 

Of the various material systems and structures studied so far, carbon 

nanotubes have shown particular promise owing to their nanoscale size and unique 

electronic properties. Recently carbon nanotube field effect transistors (CNTFETs) 

have been fabricated successfully. It is reported that they have shown better 

performance than present silicon transistors of equivalent size.  

 

 

 
  (a)      (b) 

 

Fig 1.1: (a) Moore’s Law and (b) IC technology projection. 

 

As the MOSFET gate length enters nanometer scale, however, short channel 

effect such as threshold voltage roll-off and drain-induced-barrier-lowering (DIBL) 

[1, 2] become increasingly significant, which limits the scaling capability of planar 

bulk or silicon-on-insulator (SOI) MOSFET. Several leakage current mechanisms in 

MOSFET such as reverse-bias p-n junction current, weak inversion current and drain 

induced barrier lowering (DIBL) current [3] are being introduced by short-channel 
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effect. Tunnelling effect in nano scale MOSFET is also impacting the performance of 

the transistor. Normally the separation between 2 transistors is made by inserting 

material that acts as a barrier. However, come to nano-scale transistor the transistor 

size and the distance between 2 transistor is also been scaled down, it cause the 

carries of 1 MOSFET cross the barrier and effect to another MOSFET are close to it. 

The tunnelling effect increasing exponentially as the barrier distance is decreased. 

Threshold voltage and gate oxide thickness are major issues/factor to introduce the 

leakage current in nano-scale MOSFET transistor.   

 

 Scaled down the conventional MOSFET not only bring to transistor 

performance issues but also to fabrication problem. The limitation of the MOSFET 

technology due to the fact that Zener breakdown will occur at source/substrate 

junction, lithography limitation and also the yield control for the product are the 

limitation to continue scaled the conventional MOSFET into smaller sizes.   

 

The low carrier mobility in silicon (compared to carbon nonotube) maybe 

also degrades the MOSFET transistor performance. For those reasons, the new 

devices CNTFET, new channel materials, is being extensively explored. 

 

This project work is used same 90nm technology transistor channel length to 

prove the CNTFET can provide better transistor performance compared to 

conventional MOSFET technology. The data collected from the simulation will be 

compared to conventional equivalent MOSFET technology and conclude with some 

analysis studies. With this data, the challenging for fabrication in sub-nanometer can 

be reducing. The experiments also will carry-out with differences parameter of 

voltage supply, diameter of Carbon Nanotube, oxide thickness and channel length to 

studies the effect of CNTFET transistor performance.  
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1.2 Scopes of Work 

 

 

Based on available resources, limited time frame and expertise, this research 

project is narrowed down to the following scope of work: 

 

1. Studying the quantum transport mechanism and applied the concept into 

ballistic CNTFET modeling by using MATLAB program. 

 

2. Simulate the transfer characteristic and collecting data. 

 

3. Analyze the simulation result and compared to conventional MOSFET 

transistor performance and conclude the output. 

 

4. Input differences parameter of voltage supply, properties of Carbon 

Nanotubes, oxide thickness and channel length and studies the effect to 

CNTFET performance.  

 

 

 

 

1.3 Outline of the Project Report 

 

 

This report is organized into six chapters.  The first chapter will covers the 

background, problem statement, objectives and the scopes of the project.  

 

In chapter 2, we mainly are giving some brief introduction on physic of 

Carbon Nanotube and the reason of why choose Carbon Nanotube. Some of the 

detail of the physic for example hybridization, Carbon Nanotube Molecular structure, 

Chiral Vector and Metallic and Semiconducting Nanotube also will be covered in 

this chapter. 
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Chapter 3 will summarize the current Carbon Nanotube FETs and some 

future CNTFET concept being proposed by the researchers. Some of the current 

available technology for CNTFET manufacturing and a brief idea on Top gate 

CNTFET fabrication also will be covered.  

 

Chapter 4 outlines some methodology of implementation for Ballistic 

CNTFET Modeling. The chapter will start with the basic theory of transport 

mechanism and drain current studies. The quantum transport solver NEGF formulism 

will also been covered in this chapter in order to provide a better understanding for 

the entire modeling. Step-by-step of implementation will be detail discuss in the 

following session, and hardware/software for this project will be listed as well. 

 

Chapter 5 presents the studies of the simulation result and the analysis of this 

project.   

 

Finally in Chapter 6, concludes the whole thesis and gives the direction or 

recommendation for future work. 




