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ABSTRACT

The integration of wireless and optical networks is a potential solution for the

increasing capacity and mobility as well as decreasing costs in the access networks.

Optical networks are fast, robust and error free, however, there are nonlinearity

obstacles preventing them from being perfect media. The performance of wavelength

division multiplexing (WDM) in radio over fiber (RoF) systems is found to be

strongly influenced by nonlinearity characteristics in side the fiber. The effect of four

wave mixing (FWM) as one of the influential factors in the WDM for RoF has been

studied here using Optisystem and Matlab. From the results obtained, it is found that

the FWM effects have become significant at high optical power levels and have

become even more significant when the capacity of the optical transmission line is

increased, which has been done by either increasing the channel bit rate, and

decreasing the channel spacing, or by the combination of both process. It is found

that when the channel spacing is 0.1 nm, 0.2 nm and 0.5 nm the FWM power is

respectively, becomes about -59 dBm, -61 dBm and -79 dBm. This result confirms

that the fiber nonlinearities play decisive role in the WDM for RoF system. The

simulation results obtained here are in reasonable agreement as compared with other

numerical simulation results obtained, elsewhere, using different simulation tools.
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ABSTRAK

Integrasi talian tanpa wayar dan rangkaian optik menjadi potensi kepada

penyelesaian untuk peningkatan kapasiti dan mobiliti dan seterusnya mengurangkan

kos capaian rangkaian. Rangkaian optik adalah pantas, berkesan, dan tidak

mempunyai masalah. Namun begitu halangan ‘nonlinearity’ menghalangnya menjadi

media yang sempurna. Prestasi jarak gelombang pembahagi pemultipleksan (WDM)

dalam radio melalui fiber (RoF) sistem amatlah dipengaruhi oleh ciri-ciri

‘nonlinearity’ didalam fiber. Kesan ‘four wave mixing’ (FWM) yang menjadi salah

satu faktor berpengaruh dalam WDM untuk RoF telah dikaji menggunakan

Optisystem dan Matlab. Keputusan yang diperolehi mendapati bahawa kesan FWM

menjadi penting pada optik kuasa aras tinggi dan sangat penting apabila kapasiti

talian penghantaraan optik bertambah, sama ada dengan meningkatkan kadar bit

saluran, mengurangkan penjarakan saluran, ataupun kedua-duanya sekali. Ianya

didapati bahawa apabila penjarakan saluran adalah 0.1 nm, 0.2 nm, dan 0.5 nm kuasa

FWM masing-masing adalah lebih kurang –59 dBm, -61 dBm, dan –79 dBm.

Keputusan ini mengesahkan bahawa ‘fiber nonlinearities’ memainkan peranan utama

dalam WDM untuk sistem RoF. Keputusan simulasi berangka yang diperolehi juga

bersamaan dengan keputusan model analisis yang diperolehi melalui Matlab.
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CHAPTER 1

INTRODUCTION

1.1 Introduct ion

In the past, dating back to the beginning of the human civilization,

communication was done through signals, voice or primitive forms of writing and

gradually developed to use signaling lamps, flags, and other semaphore tools.

As time passed by, the need for communication through distances, to pass

information from one place to another, became necessary and the invention of

telegraphy brought the world into the electrical-communication. The major

revolution that affected the world however was the invention of the telephone in

1876. This event has drastically transformed the development of communication

technology. Today’s long distance communication has the ability to transmit and

receive a large amount of information in a short period of time.

Since the development of the first-generation of optical fiber communication

systems in the early 80’s [4], the optical fiber communication technology has

developed fast to achieve larger transmission capacity and longer transmission

distance, to satisfy the increased demand of computer network. Since the demand on

the increasing system and network capacity is expected, more bandwidth is needed

because of the high data rates application, such as video conference and real-time

image transmission, and also to achieve affordable communication for everyone, at
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anytime and place [1]. The communication capabilities allow not only human to

human communication and contact, but also human to machine and machine to

machine interaction. The communication will allow our visual, audio, and touch

sense, to be contacted as a virtual 3-D presence [3].

To keep up with the capacity increasing requirement, new devices and

technologies with high bandwidth are greatly needed by using both electronic and

optical technologies together to produce a new term Radio over Fiber (RoF). The

progress made so far has been impressive, where information rate at 1 terabits/s can

be handled by a single fiber [5].

RoF is a technology used to distribute RF signals over analog optical links. In

such RoF systems, broadband microwave data signals are modulated onto an optical

carrier at a central location, and then transported to remote sites using optical fiber.

The base-stations then transmit the RF signals over small areas using microwave

antennas and. Such a technology is expected to play an important role in present and

future wireless networks since it provides an end user with a truly broadband access

to the network while guaranteeing the increasing requirement for mobility. In

addition, since it enables the generation of millimeter-wave signals with excellent

properties, and makes effective use of the broad bandwidth and low transmission loss

characteristics of optical fibers, it is a very attractive, cost-effective and flexible

system configuration.

1.2 Problem Background

Normally light waves or photons transmitted through RoF have little

interaction with each other, and are not changed by their passage through the fiber

(except for absorption and scattering). However, there are exceptions arising from

the interactions between light waves and the material transmitting them, which can

affect optical signals in RoF. These processes generally are called nonlinear effects

because their strength typically depends on the square (or some higher power) of

intensity rather than simply on the amount of light present. This means that nonlinear
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such as self phase modulation (SPM), cross phase modulation (XPM), four wave

mixing (FWM), stimulated raman scattering (SRS), and stimulated brillouin

scattering effects (SBS) are weak at low powers, but can become much stronger

when light reaches high intensities [7]. This can occur either when the power is

increased, or when it is concentrated in a small area-such as the core of an optical

fiber. Nonlinear optical devices have become common in RoF applications, such as

to convert the output of lasers to shorter wavelengths by doubling the frequency. The

nonlinearities in RoF are small, but they accumulate as light passes through many

kilometers of fiber. Nonlinear effects are comparatively small in optical fibers

transmitting a single optical channel. They become much larger when wavelength-

division multiplexing (WDM) packs many channels into a single fiber [9].

WDM puts many closely spaced wavelengths into the same fiber where they

can interact with one another. It also multiplies the total power in the fiber. A single-

channel system may carry powers of 3 milliwatts near the transmitter. DWDM

multiplies the total power by the number of channels, so a 40-channel system carries

120 mW. That's a total of 2 mW per square micrometer-or 200,000 watts per square

centimeter [11]. Several nonlinear effects are potentially important in RoF, although

some have produce more troublesome than others. Some occur in systems carrying

only a single optical channel, but others can occur only in multichannel systems.

1.3 Problem Statement

The rapid development of the wireless communication networks has

increased the need of the optical signal processing. The link lengths have grown to

thousands of kilometers without need to convert optical signals back and forth to

electric form, and the transmission speeds of terabits per second are feasible today

[5]. This ever-growing demand for the high speed communication has forced to use

higher bit rates as well as transmission powers.

Nonlinear effects on communication have become significant at high optical

power levels and have become even more important since the development of
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erbium-doped fiber amplifier (EFDA) and DWDM systems. By increasing the capacity

of the optical transmission line, which can be done by increasing channel bit rate,

decreasing channel spacing or the combination of both, the fiber nonlinearities come

to play even more decisive role.

The origin of the nonlinearities is the refractive index of the optical fiber,

which is varies with the intensity of the optical signal. This intensity-dependent

component of the refractive index includes several nonlinear effects, such as SPM,

XPM, FWM, SRS, and SBS, and becomes significant when high powers are used.

Although the individual power in each channel may be below the level needed to

produce nonlinearities, the total power summed over all channels can quickly

become significant. The combination of high total optical power and large number of

channels at closely spaced wavelengths is a source for many kinds of nonlinear

interactions.

Form the above-mentioned reasons, this study is aimed to gain insight into

nonlinear effect caused specifically by FWM in the WDM for RoF system and

measure the coefficient behind these nonlinear effects. Nonlinear coefficient of the

RoF may become an important parameter, when new optical long-haul transmission

lines and networks are being deployed.

1.4 Object ive of the Projec t

The main objective of this project is to evaluate the FWM in WDM for RoF

technology, in order to calculate the impairments associated with long-distance high-

bit rate optical fiber communication systems. In order to achieve the objective,

optisystem and matlab programming software will be used respectively in the

numerical simulation and the analytical modelling will be verified through

comparison with optisystem simulation.
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1.5 Scope of the Project

To study the efficiency of the FWM in WDM for RoF optical network, two

approaches were followed in this project. The first approach is the numerical

simulation using Optisystem software which almost replicates a real system. The

second aproach is the analytical modeling, which is simple and faster to analyze its

performance. MATLAB programming is used to implement the analytical model. To

verify the analytical system, a comparison is made with the Optisystem software.

Since Routing and wavelength assignment algorithm (RWA) needs to set up the path

immediately to reduce network delays, the analytical model developed in this project

can be used to calculate the impairments fast enough so that the routing decisions can

be made efficiently, to achieve optimal systems.

1.6 Organizat ion of the Projec t

Chapter 1 provides the introduction to this project where brief background of

the study problem and to the statement of the problem. Followed by the objective,

and the scope of the study. Chapter 2 reviews the literature, which includes

introduction to the RoF, the benefits, and applications of the Radio over Fiber

Technology in both satellite and mobile radio communications. In addition various

types of RoF Multiplexing Techniques, such as Sub carrier multiplexing and

wavelength division multiplexing, have also bee covered. Chapter 3 provides

information about the fiber characteristics, and the non linear effects such as SPM,

FWM, SBS, SRS, and XPM.

Chapter 4 describes the methodological processes by showing detailed diagram of

the methods implemented as well as highlighting briefly the steps those have been

followed to achieve the objective of this project. Chapter 5 presents the results

derived from the methods explained where some analyses and simulations were done

based on the FWM effects. Finally the conclusions of the study, as well as some

suggestions for future work were summed up in Chapter 6.




