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Abstract: A parametric study was conducted to assess effect of creep on long term behaviour of prestressed 

concrete Integral Abutment Bridge (IAB). Varying backfill soil types were provided behind the bridge abutment 

and the interaction was modelled using linear springs. The effect of backfill soil type on the behaviour of the 

bridge was assessed through 75-year time-history simulations carried out in Commercial Finite Element 

Software (LUSAS). CEB-FIP 1990 creep model was used to analyse the linear viscoelastic behaviour of creep.  

The result has shown that creep and backfill soil type have a no severe effect on the behaviour of the bridge. 

Keywords:  Creep; Integral Abutment Bridge; Soil-structure interaction; Finite Element Method. 

 

1.0 Introduction 

Integral Abutment Bridges (IABs) or jointless bridges are bridges constructed without 

conventional expansion joints and bearings, their superstructure and abutment are rigidly 

connected. IABs have recently become popular among Bridge Engineers due to their 

economic advantage; the maintenance of joints and bearings that used to be a major cost of 

bridge maintenance is virtually eliminated in IABs.  The absence of joints adds to the 

redundancy of the structure thereby improving its structural performance especially during 

seismic loading. Despite these advantages, there are concerns that creep and temperature 

loading may lead to inadequate long term performances of IABs. The difficulty in predicting 

the behaviour of IABs is due to complex boundary condition, nonlinear behaviour associated 

with soil-structure interaction, temperature changes, creep and shrinkage of concrete (Kim 

and Laman, 2010). Paucity of design codes for IABs has resulted in numerous research works 

on long-term performance of IABs under temperature and time dependent loads.  In many of 

these research works, soil-structure interaction was identified as a major factor that affects the 

behaviour of IABs (Huang et al. 2008, Dicleli and Erhan 2009, Kalayci et al. 2009, Noorzaei 

et al. 2010). It was discovered that the denser the backfill of sandy soil the more the axial 

forces and moments on the bridge deck (Faraji et, al 2001). Besides,  Pile moments were 

minimized with denser backfill and lower pile restraint (Civjan and Bonczar, 2007). 

Concrete Creep was discovered to have adverse effect on IABs (Kim and Laman 2010); 

deflection due to time dependent loading was found to be equal to the deflection from 

instantaneous loading (Arockiasamy and Savikumar, 2005). Pugasap et al (2009) discovered 

that Creep and Shrinkage led to long term top abutment displacement while bottom abutment 

displacement was due to time dependent effects and elastoplastic behaviour. 

mailto:akilmuh@yahoo.com


There is limitation of research works on the effect of creep on IABs under varying types of 

backfill soil. Since previous research works have established the importance soil-structure 

interaction on the behaviour of IABs, there is the need to understand the response of IABs to 

different types of backfill under creep effect. In this research a parametric study was 

undertaken on 75 years behaviour of long span prestressed concrete girder IAB under creep 

loading using finite element software, LUSAS. 

 

2.0 The Bridge detail 

The bridge is a 210m long concrete slab on Prestressed concrete girder IAB (Figure 1). It has 

seven equal Pier-to-Pier spans of 30m length (Figure 2a) and 11 equally spaced standard 

prestressed concrete T-beams of 2.7m depth (Figure 2c) with longitudinal length of 30m 

provided along the 13.9m bridge width to support 20mm thick Deck Slab. The bridge has two 

carriage ways of 3.65m on each of its two lanes. The girders are seated on pier caps placed 

transversely at 30m intervals and the pier caps are supported by three piers (Figure 1). At 

each end of the bridge, the longitudinal beams are embedded into 1.2m thick and 6m high 

abutments (Figure 2b). The abutment is supported by a pile cap sitting on 21 closely spaced 

0.6 m diameter circular Piles. The whole structure acts like a single frame system with rigid 

connection between the superstructure and the substructure. The bridge is horizontal without 

skew or curvature. 

 

 

Figure 1.0: A section of the superstructure of the Integral Bridge. 
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Figure 2.0:  (A) Elevation of the 210m long bridge. (B) Girder abutment integral connection. 

(C)  Posttensioned T-beam (Dimensions in mm). 

The bridge girders were designed as continuous Post tensioned concrete T beams. Prestress 

force of 4600 KN was applied on both sides of the girder using 7 wire standard strand of 

12.9mm diameter and 195E6 kN/m
2
 Modulus of Elasticity. Secondary moments from 

prestress cable were analysed using equivalent load method in BPhatt (2011), and calculated 

using the equation: 
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Where q is the equivalent load from cable, p is prestress force and x is the cable curvature, L 

is the length of a beam, e1, e3 and e2 are the prestress cable eccentricities at left end, mid 

span and right end of the beam respectively.  

 

3.0 Finite Element Model 

A longitudinal strip of the bridge comprising of four beams resting on Pier cap which 

supported by Pier and Pile cap was used to represent the bridge model (Figure 3.0). A three-

dimensional thick non-linear beam element (BTS3) with CEB-FIP1990 creep material 

properties, was used to model posttensioned concrete girders. Three dimensional thick beam 



(BMS3) was used to model abutment wall, pier, pier head, and pile head. 

 

Figure 3.0 Finite Element model of the Bridge.  

 

Tables 1 and 2 provides the geometric and materials properties of the bridge members. BS 

8110 concrete grade 40 was used as the material property of all the bridge members with the 

exception of prestressed concrete girders which were modelled using creep material in CEB-

FIP 1990 code to enable proper analysis of the effect of creep on the behaviour of the IAB.  

Prestress force on girder was modelled using line mesh as shown in Figure 4.0. Horizontal 

line represents the beam while curved line represents tendon. Both the beam and the tendon 

are modelled as beam element. Single tendon prestress wizard in LUSAS calculates 

equivalent prestressing force from tendon and applies it to beam at nodal points. This creates 

the prestressing effect of tendon on the beam. 

 

Figure 4.0 Beam and Tendon model. 

 

The bridge loading comes from its self-weight and imposed load. Imposed load comprised of 

HA- UDL, HA-KEL and HA-HB 45 loads according to BD37/01 design manual of roads and 

bridges (British Highway Agency, 2001). Different load cases were considered for the 

superstructure live and dead loads and the load case that gave the worst loading condition 

was used in the analysis. 

 



Table 1.0 Geometric property of Bridge members. 

Member Area 

(mm
2
) 

Second 

moment of 

are about yy 

axis  

(mm
4
) 

Second 

moment of 

are about zz 

axis  

(mm
4
) 

Product 

moment of 

area lyz 

Torsional 

constant  

Jxx 

T-beam 1.81635E6 1.58525E12 54.8328E9 -93.2915E6 148.969E9 

Abutment 10.2915E12 62.8587E24 1.03049E24 -4.40733E21 3.85918E24 

Pier head 3.04E6 793.085E9 733.419E9 -24.0138E6 1.31989E12 

Pier 6.24E6 14.0255E12 715.892E9 -0.585938 2.44947E12 

Pile head 8.16E6 1.92567E12 15.6284E12 670.41E6 5.98345E12 

 

Table 2.0 Material Properties of bridge girders. 

Material Yong 

Modulus 

Nmm 

Poisson’s 

ratio 

Mass 

density

N/mm
3
 

Coefficient 

of thermal 

expansion 

Mean 

compressive 

strength 

N/mm
2
 

Relative 

humidity 

% 

Nominal 

size 

mm 

BS5400 

Concrete 

creep 

CEB-FIP 

28E3 0.2 2.4E-9 0.012E-3 50 70 462.6 

BS 5400 28E3 0.2 2.4E-9 0.01E-3 50 70 462.6 

 

4.0 Creep Calculation 

Concrete undergo physical and chemical change in volume as a result of its interaction with 

the environment. Time-dependent deformations in concrete like creep, shrinkage and 

relaxation are as a result of the hydration process of concrete as it interacts with the 

environment over time. These deformations need to be considered in studying long term 

behaviour of concrete. In this research, Time-history simulation was carried out to analyse 

the effect of creep on the long span IAB over a 75 year period in line with American State 

Highway and Transportation Officials (ASTHO) prescribed bridge life span period of 75 

years. The nonlinear viscous behaviour of creep in concrete was analysed using CEB-FIP 

1990 creep model and Modified Newton Raphson method was used for the nonlinear 

iteration.  

CEB-FIP Model Code 1990 calculates the total strain in a concrete member that is uniaxially 

loaded at time 0t  with a constant stress )( 0tc  as follows: 

)()()()()( 00 ttttt cTcsccci  
                                                                      (2) 



         =  )()( tt cnc                                                                                                    (3) 

Where; 

)( 0tci  is the initial strain at loading. 

 )(tcc  is the creep strain at time 0tt   

 )(tcs  is the shrinkage strain.  

)(tcT  is the thermal strain. 

)(tc is the stress dependent strain:  )()()( 00 ttt cccic     

)(tcn is the stress independent strain:  )()()( 00 ttt cTcscn    

Creep is assumed to have a linear relationship with stress within the range of service stress. 

For a constant stress at time 0t , creep strain is obtained as: 
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Where, ),( 0tt is creep coefficient which is a ratio of creep to instantaneous strain and Ec is 

Modulus of Elasticity in 28 days. 

The stress dependent strain, ),( 0ttc , may then be expressed as: 
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Where, ),( 0ttJ  is the creep function, )( 0tEc  is the modulus of elasticity at the time of 

loading 0t and  
)(

1

0tEc

  represents the initial strain per unit stress at loading.  

The principle of superposition is assumed to be valid for variable stresses or strains. It is used 

to obtain the constitutive equation for concrete creep also known as integral type creep law as 

expressed in equation (6). 
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Notional creep coefficient is estimated from the equation below: 

)(),( 000 tttt c                                                                                                       (7)      

0  is the notional creep coefficient.  



c  is the coefficient to describe the development of creep with time after loading. 

t is the age of concrete (days) at the moment considered. 

t0 is the age of concrete at loading (days). 

In the CEB-FIP Code the notional creep coefficient is calculated from 

)()( 00 tfcmRH                                                                                                      (8) 
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Where; 

 h is the notional size of the member (mm) = uAc /2 , Ac is area of cross section, u is length 

of the perimeter of the cross section which is in contact with the atmosphere.  cmf  is the mean 

concrete compressive strength (MPa) at 28 days.  cmof  = 10MPa, RH is the relative humidity 

of the ambient environment (%),  0RH  = 100% and 0h  = 100mm (Comite Euro-International 

du Beton, 1990). 

The development of creep with time is given by 
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5.0 Soil-Structure Interaction 

Due to the rigid connection between the superstructure and the abutment, Backfill-Abutment 

interaction and Pile-Soil interaction becomes the only means of accommodation of movement 

from live loads, creep and shrinkage. The soil-structure interaction becomes an important 

factor of consideration in the behaviour of IABs. Because Piles and the Pile caps are buried in 
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the soil, the horizontal load on the group of Piles can be resisted by the friction and passive 

soil resistance (Bhatt et al, 2006). Due the rigidity provided by the supporting soil, Pile 

member was not considered in the model. A series of Winkler springs support is used to 

approximate backfill soil behavior. This is sufficient because our concern is on structural 

behavior of the bridge and not soil movement that may necessitate a continuum model. The 

horizontal spring stiffness per square meter of the backfill of stiffness sE  behind abutment of 

depth H and transverse length L is approximated in equation (14) ( O’Brien et al, 2005).     
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 sE  was approximated by Lehane et al (1996) to be: 
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Dry density of soil d , used in specifying the degree of compaction of backfill, is related to 

the void ratio in equation (16) which is used in obtaining void ratio of soil. 

)1( e

G ws
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Where sG  and w are the specific gravity of soil and density of water respectively, e is the 

void ratio of soil, P
’
 is the mean confining stress less pore water pressure in the soil, Patm the 

atmospheric pressure (100kN/m
2
), is the shear strain taken to have a range of 50x10

-6
 to 

0.01. 

Analysis of creep on the IAB was carried out under various soil types as shown in Table 3.0. 

 

Table 3.0 Varying Soil properties used in the Model (Michael (2001) and Bowles (1996)). 

Soil type Density 

(wet) 

kN/m
3
 

Void ratio 

of soil    (e) 

Average 

shear 

strain (γ) 
m 

Soil Stiffness 

 kN/m
2
 

Horizontal 

Spring Stiffness 

kN/m/m
2
 

Dense sandy 

soil 

22 1.0 0.0002 

 
375771.8 6991.4 

Loose sandy 

soil 

16 1.38 0.0002 

 
186562.6 2695.9 

Medium Stiff 

clay 

18 1.23 0.0018 

 
31728.2 4112.1 

Soft clay 15 1.47 0.0002 
 

15788.7 2024.9 



 6.0 Result and Discussion 

Finite Element Method was used to carryout 75years time history simulation to assess the 

effect of time-dependent loadings (creep, shrinkage and relaxation) on the behaviour of the 

Integral Bridge under varying backfill soil types. The result of is shown in Figures 5.0 to 

12.0.  The first ten years showed rapid increase in deformations (moment, shears, and 

deflections) where more than half of the deformations were recorded in the first ten years. 

This is due to the effect of shrinkage and instantaneous strains in addition to creep strain that 

are experienced in the early age of concrete as discussed by Raymond and Gilbert (2011). 

The linearity of instantaneous strain is observed in the early ages of the deformations.   

Girder deflection due to time dependent loading was found to exceed girder deflection due to 

instantaneous loading. This is in line with findings of Arockiasamy and Savikumar, (2005) 

where they discovered deflection due to time dependent loading to be equal to the deflection 

from instantaneous loading. Figures 5 and 6 show there is no significant effect of backfill soil 

type on girder and abutment displacements. The maximum value of girder deflection of 

9.73mm is an acceptable value within the range of safety limit. In Figure 7.0 it can be seen 

that there was no significant difference in the bending moment of girder due to varying 

backfill soil but a marked difference is observed in abutment moment. Abutment moment in 

soft clay soil is larger than in dense sandy soil (Figure 8.0).  

Figure 9.0 shows that backfill soil type has no effect on girder axial load but there is 

significant difference in abutment axial load. The axial load in soft clay soil is more than 

thrice the value of axial load in dense sandy soil (Figure 10.0). There is also significant 

variation of shear in the girder and abutment under varying backfill soils over 75 years. The 

shear force has increased remarkably in the girder but has decreased quite significantly in the 

abutment (Figure 11 and 12). 

 

Figure 5.0 Variation of mid span Girder Displacement in 75 years under varying soil 

conditions. 
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Figure 6.0 Variation of Abutment Displacement in 75 years under varying soil conditions. 

 

  

Figure 7.0 Variation Girder bending moment measures at mid span under varying soil 

conditions. 
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Figure 8.0 Variation of Abutment bending moment in 75years under varying soil conditions.  

 

Figure 9.0 Variation of Girder axial load in 75years under varying soil conditions.  

 

Figure 10.0 Variation of Abutment axial load in 75years under varying soil conditions.  
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Figure11.0 Variation of Girder Shears in 75years under varying soil conditions.  

 

 

Figure 12.0.  Variation of Abutment shears in 75years under varying soil conditions.  

 

7.0 Conclusion 

In conclusion, the research investigated the effect of creep on long-term behaviour of Integral 

Abutment Bridge under varying backfill soil. The research discovered that there is no 

significant difference in girder and abutment displacement, girder axial load and girder 

moment as a result of variations in backfill soil. There is however marked variations in 

abutment and girder shears, abutment axial load and abutment moment.   
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