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ABSTRACT- This paper presents a new application
of Artificial Neural Network (ANN) for frequency
response in system dynamics. In order to perform
the ANN, the power flow solution is obtained first for
the system to be studied. The purpose of load flow
simulation is to get some operating parameters
which influence the system frequency behavior. The
transient simulation of a power system is then
simulated by DigSilent Simulator to analyze the
frequency response of the system when it subjected
to a disturbance. Simulations were carried out on
the IEEE 9-Bus Test System considering load
injection on the system. The data collected from
transient simulation are then used as inputs to the
ANN while the frequency response of the systems
as the ANN output. The Lavernberg–Marquardt
optimization utilizing very fast propagation algorithm
has been adopted for training feed–forward Neural–
Network. To verify the effectiveness of the proposed
application of ANN method, its performance is
compared with the actual value obtained from
transient simulation. The ANN provides promising
results in terms of error estimation, accuracy and
computation time.

1. INTRODUCTION

Frequency is regarded as a paramount index of
the operation of power systems because it can
reflect the dynamic energy balance situation
between generating power and load. Under steady
state conditions the total power generated by power
stations is equal to the system load and losses while
frequency normally operated at a nominal value.
Typically, the nominal frequency is assumed to be
50 Hz as in the ENTSO-E Continental Europe
system (former UCTE) [1]. However, the deviations
from this desired value arise due to imbalances
between the instantaneous generation and
consumption of electric power, which has an
accelerating or decelerating effect on the
synchronous machines.

The frequency of power system is
dependent on real power balance. A change in real
power demand at one point of a network is reflected
throughout the system by a change in frequency.
This behavior of a power system is shown in [2]. In

most cases, the frequency can deviate from its
nominal value due to the transient events occurred
in the power system dynamics. A dynamic
phenomenon in a power system is initiated by a
disturbance. Therefore, the response of the system
after disturbance occurred is depends on a how
large the disturbance [3].

Practically, frequency variation range for the
system operation is established as 50±0.5 Hz [4].
Beyond these limits may result abnormal conditions
of electrical power system. A non-nominal frequency
causes a lower quality of the delivered electrical
energy. A large frequency deviation would damage
equipment, degrade load performance, cause the
transmission lines to be overloaded, also can
interfere with system protection schemes and
ultimately leading to a complete power system
collapse [1, 3]. In comparison with the thermal units,
hydro power plants are more robust and can
normally cope with frequency down to 45 Hz [1].
From reference [5] shows an example of a defence
plan against frequency instability. In short, off-
nominal frequency can directly impact on power
system operation and system reliability [3].

In the past several decades, a variety of
algorithms for frequency estimation have been
reported as elaborated in paper [6]. Approached
methods for instance are Discrete Fourier
Transform (DFT) [7-12], Prony’s method [13],
Orthogonal FIR digital filter [14], zero-crossing
method [15], Least Error Squares (LES) [16],
Kalman Filter [17-20], Least Mean Square (LMS)
[21], Phase Lock Loop (PLL) [22], Adaptive Notch
Filter (ANF) [23], and etc. Reference [24] presents
review several methods, outlining strengths and
weaknesses of each one.

An effective method for frequency
estimation is an important task in the power system
operation, monitoring, control and protection. Thus,
this paper presents the new approach of ANN’s
application to determine minimum frequency
response during dynamic phenomena. The
performance of ANN in terms of error estimation is
then compared with transient simulator.

To prepare the training database for an
ANN, the power flow (steady state) and the transient
simulations have been determined first through
DigSilent Power Factory Simulator in Section 2.
Next step in Section 3, deals with ANN
implementation to determine minimum frequency
using MATLAB Neural Network Toolbox. Results



will be presented in Section 4 and conclusion in
Section 5.

2. TRANSIENT SIMULATION ON THE TEST
SYSTEM

The work procedure is summarized in Figure 1.

Fig. 1 Flow chart

2.1 Test System

Fig. 2 shows the IEEE 9-bus system in
which the data used for this work is obtained from
reference [25]. The system consists of three
generators with AVR Type-1, three transformers,
three transmission lines and three loads. Consider
into account a realistic transient analysis and
simulation; all generators are modeled by
controller’s parameters such as prime mover
(turbine), governors and voltage controller
parameters.

Fig. 2 IEEE 9-bus Test System

3. ARTIFICIAL NEURAL NETWORK (ANN)

3.1 Input Features Selection

The selection of input features is an
important factor to be consideration in the ANN
implementation. The input features selected for this
work are generated real power (Pgen) and reactive
powers (Qgen), their change of generated real power
(∆Pgen) and reactive power (∆Qgen), real power
(Pload) and reactive power (Qload) of all loads
respectively, their change of real power (∆Pload) and
reactive power (∆Q load) and also spinning reserved
(SR). Overall there are 25 input features selected
for the neural network. Table 1 shows the
breakdown of the input features selected for the
Neural Network.

Table 1 Input features selection
Name of input features No. of features

Pgen & Qgen 6
∆Pgen & ∆Qgen 6

Pload & Qload 6
∆Pload & ∆Qload 6

SR 1
Total 25

Based on [26], one hidden layer is suitable
enough to represent all nonlinear performances.
The number of neurons in hidden layer however
would vary for different applications and could
usually depend on the size of the training set and
number of input variables. Thus, a few heuristic
rules are given on how to select the appropriate
number of hidden neurons by refer to the [26].

Aforementioned the main objective of this work
is to determine frequency response of the power
system dynamics that is minimum frequency.
Therefore, only one neuron is sufficient for the
output of Neural Network, i.e.: target output. The
Lavenberg-Marquardt back propagation algorithm
has been trained for feed-forward Neural Network.
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The next step is to divide the inputs and target
output up into training, validation and test. About
70% of data are used for training and the rest of
15% of data are used for validation and testing.

4. RESULTS

The results obtained from the transient
simulator and ANN tool are presented. The
frequency response for transient simulation with
10% load injections to the network system is
illustrated in Fig. 3. Different operation conditions
may contribute to the change of frequency
response. The value of frequency response from
transient simulation is referred as actual value for
comparison purpose. The ANN results of 35 test
data with 51 neurons layer, 26 neuron layers and 13
neuron layers in the hidden layer are also
presented. For the purpose of evaluating the
effectiveness of the ANN’s application, finally a
comparison is made between transient simulation
and ANN in terms of error estimation as shown as in
Table 2. The total percentage error estimation
between transient simulation and ANN with 51
neurons layer, 26 neurons layer and 13 neurons
layer are 6.9% (8 cases), 5% (9 cases) and 0.8%  (7
cases) respectively. It can be observed that the
error is reduced as the number of neurons in hidden
layer is also reduced. In Fig. 5, the Mean Square
Error (MSE) is used as a goal for training the Neural
Network with the best validation performance is
0.0044963 at epoch 3.

5. CONCLUSION

An application the ANN into power system
dynamics to estimate minimum frequency is
proposed in this paper. Time domain simulations
were first carried out to generate training data for
the ANN input layer and target output. By
considering loads event in the network, the 10%
load injection occur at 10 s, consequently gives the
some variations of frequency response when
generated real power (PG2) was adjusted from 50%
to 100% in steady state condition. The results from
ANN are then compared with the transient
simulations in terms of error estimation. It can be
concluded that the ANN with 13 neurons in hidden
layer gives better performance in terms of error
estimation, small MSE and fast computational time
compared with other neurons number in hidden
layer. Thus, the ANN provides promising result for
the frequency response in power system dynamics.
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Fig. 3 Frequency response after 10% of load
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Fig. 4 Mean Square Error (MSE)



Table 2   Estimation error for the frequency response both transient simulation and ANN

Test
set

Transient
Simulation ANN (51 Neurons) ANN (26 Neurons) ANN (13 Neurons)

(Hz) (Hz) Error l% errorl (Hz) Error l% errorl (Hz) Error l% errorl

1 48.24 48.24 0.00 0.00 48.24 0.00 0.00 48.24 0.00 0.00

2 48.71 48.71 0.00 0.00 48.71 0.00 0.00 48.72 -0.01 0.02

3 49.04 49.04 0.00 0.00 49.04 0.00 0.00 49.04 0.00 0.00

4 49.04 49.04 0.00 0.00 49.04 0.00 0.00 48.96 0.07 0.15

5 49.04 49.01 0.02 0.05 49.04 0.00 0.00 48.99 0.05 0.10

6 49.04 49.04 0.00 0.00 49.04 0.00 0.00 49.04 0.00 0.00

7 49.04 49.04 0.00 0.00 49.04 0.00 0.00 49.04 0.00 0.00

8 47.03 47.03 0.00 0.00 47.03 0.00 0.00 47.03 0.00 0.00

9 47.46 47.46 0.00 0.00 47.62 -0.16 0.34 47.46 0.00 0.00

10 47.88 47.88 0.00 0.00 47.88 0.00 0.00 47.85 0.03 0.06

11 48.09 48.09 0.00 0.00 48.09 0.00 0.00 48.09 0.00 0.00

12 48.10 48.10 0.00 0.00 48.10 0.00 0.00 48.10 0.00 0.00

13 48.10 48.08 0.02 0.03 48.10 0.00 0.00 48.12 -0.02 0.05

14 48.10 48.10 0.00 0.00 48.10 0.00 0.00 48.10 0.00 0.00

15 45.95 46.32 -0.37 0.81 45.95 0.00 0.00 45.95 0.00 0.00

16 46.35 46.89 -0.54 1.16 46.35 0.00 0.00 46.35 0.00 0.00

17 46.76 47.08 -0.32 0.69 46.76 0.00 0.00 46.76 0.00 0.00

18 47.12 47.12 0.00 0.00 47.12 0.00 0.00 47.12 0.00 0.00

19 47.24 47.24 0.00 0.00 47.28 -0.04 0.08 47.24 0.00 0.00

20 47.24 47.39 -0.15 0.32 47.24 0.00 0.00 47.24 0.00 0.00

21 47.25 47.24 0.00 0.00 47.14 0.11 0.23 47.25 0.00 0.00

22 44.80 45.34 -0.54 1.21 44.80 0.00 0.00 44.86 -0.06 0.13

23 45.32 45.75 -0.43 0.95 45.32 0.00 0.00 45.32 0.00 0.00

24 45.73 45.73 0.00 0.00 45.73 0.00 0.00 45.73 0.00 0.00

25 46.11 46.11 0.00 0.00 45.87 0.25 0.54 46.11 0.00 0.00

26 46.45 46.11 0.34 0.73 46.45 0.00 0.00 46.45 0.00 0.00

27 46.45 46.45 0.00 0.00 46.33 0.12 0.25 46.45 0.00 0.00

28 46.45 46.45 0.00 0.00 46.02 0.43 0.93 46.46 0.00 0.01

29 43.57 43.57 0.00 0.00 43.57 0.00 0.00 43.66 -0.09 0.22

30 44.21 44.21 0.00 0.00 44.21 0.00 0.00 44.21 0.00 0.00

31 44.69 44.69 0.00 0.00 45.01 -0.32 0.71 44.69 0.00 0.00

32 45.11 45.11 0.00 0.00 45.11 0.00 0.00 45.15 -0.04 0.08

33 45.68 45.19 0.50 1.09 45.13 0.55 1.20 45.69 -0.01 0.02

34 45.69 45.69 0.00 0.00 45.33 0.36 0.78 45.69 0.00 0.00

35 45.69 45.69 0.00 0.00 45.69 0.00 0.00 45.69 0.00 0.00
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