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ABSTRACT

Recent drastic growth in the mobile broadband services specifically with the
proliferation of smart phones demands for higher spectrum capacity of wireless cellular
systems. Due to the scarcity of the frequency spectrum, cellular systems are seeking
aggressive frequency reuse, which improve the network capacity, however, at the
expense of increased Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR)
scheme has been acknowledged as an effective ICI mitigation scheme, however,
in literature FFR has been used mostly in perfect geometry network. In realistic
deployment, the cellular geometry is irregular and each cell experiences varying
ICI. The main objective of this thesis is to develop ICI mitigation scheme that
improves spectrum efficiency and throughput for irregular geometry multicellular
network. Irregular Geometry Sectored-Fractional Frequency Reuse (IGS-FFR) scheme
is developed that comprises of cell partitioning and sectoring, and dynamic spectrum
partitioning. The cell-partitioning and sectoring allows full frequency reuse within
an irregular geometry cell. Nevertheless, the sub-regions in an irregular cell have
varying coverage areas and thus demands diverse spectrum requirements. The IGS-
FFR scheme is designed to dynamically allocate the spectrum resources according to
the traffic demands of each sub-region. An enhanced IGS-FFR has been developed
to optimally allocate the spectrum resources to individual users of each sub-region.
Enhanced IGS-FFR has been realized using two different approaches, Auction
based Optimized IGS-FFR (AO-IGS-FFR) and Hungarian based Optimized IGS-FFR
(HO-IGS-FFR). The results show that IGS-FFR has significantly improved the cell
throughput by 89%, 45% and 18% and users’ satisfaction by 112%, 65.8% and 38%
compared to Reuse-1, Strict-FFR and FFR-3 schemes, respectively. The findings show
that the ICI mitigation in IGS-FFR is reinforced by users’ satisfaction. As the number
of sectors in IGS-FFR increases from 3 to 4 and 6, the cell throughput increase by
21% and 33% because of spatial diversity exploitation along with orthogonal sub-band
allocation. AO-IGS-FFR and HO-IGS-FFR have further improved the cell throughput
of the basic FFR-3 by 65% and 72.2%, respectively. HO-IGS-FFR performs 7% better
than the AO-IGS-FFR at the expense of 26.7% decrease in the users’ satisfaction and
excessive complexity. Although, AO-IGS-FFR compromises sub-optimal bandwidth
allocation, it is a low complexity scheme and can mitigate ICI with high users’
satisfaction. The enhanced IGS-FFR can be deployed in future heterogeneous irregular
geometry multicellular OFDMA networks.



vi

ABSTRAK

Pertumbuhan drastik dalam perkhidmatan terkini jalur lebar mudah alih
terutamanya dengan percambahan telefon pintar memerlukan kapasiti spektrum sistem
selular tanpa wayar yang lebih tinggi. Oleh kerana kekurangan spektrum frekuensi,
sistem selular sedang mencari frekuensi guna semula yang agresif, yang mana
meningkatkan keupayaan rangkaian, bagaimanapun dengan mengorbankan gangguan
antara sel (ICI) yang meningkat. Skim frekuensi guna semula berperingkat (FFR) telah
diiktiraf sebagai skim pencegahan ICI yang berkesan, namun begitu, dalam kajian
FFR kebanyakan telah digunakan di dalam rangkaian geometri sempurna. Dalam
penggunaan sebenar geometri selular adalah tidak teratur dan setiap sel mengalami
ICI yang berbeza-beza. Objektif utama tesis ini adalah untuk membangunkan skim
pengurangan ICI yang meningkatkan kecekapan spektrum dan daya pemprosesan
untuk geometri tidak teratur bagi rangkaian multisel. Skim geometri tidak teratur
bersektor-frekuensi guna semula berperingkat (IGS-FFR) dibangunkan yang terdiri
daripada pembahagian dan persektoran sel, dan pembahagian spektrum dinamik.
Pembahagian dan persektoran sel membolehkan penggunaan semula frekuensi penuh
dalam sel geometri tidak teratur. Walau bagaimanapun, sub-kawasan dalam sel
yang tidak teratur mempunyai pelbagai kawasan liputan dan dengan itu memerlukan
keperluan spektrum yang pelbagai. Skim IGS-FFR direka untuk secara dinamik
memperuntukkan sumber spektrum, mengikut permintaan trafik setiap sub-kawasan.
IGS-FFR yang dipertingkatkan telah dibangunkan untuk berfungsi secara optimum
dalam memperuntukkan sumber spektrum kepada pengguna individu bagi setiap sub-
kawasan. IGS-FFR yang dipertingkatkan telah direalisasikan dengan menggunakan
dua pendekatan yang berbeza, IGS-FFR yang dioptimum berdasarkan lelong (AO-
IGS-FFR) dan IGS-FFR yang dioptimum berdasarkan Hungarian (HO-IGS-FFR).
Keputusan menunjukkan bahawa IGS-FFR telah meningkatkan daya pemprosesan sel
dengan ketara dengan pada 89%, 45% dan 18% dan kepuasan pengguna masing-
masing pada 112%, 65.8% dan 38% berbanding dengan skim-skim Reuse-1, Strict-
FFR dan FFR-3. Hasil kajian menunjukkan bahawa pengurangan ICI di IGS-FFR
dikuatkan oleh kepuasan pengguna. Dengan kenaikan bilangan sektor di IGS-FFR dari
3 ke 4 dan 6, daya pemprosesan sel juga meningkat masing-masing sebanyak 21% dan
33% kerana eksploitasi kepelbagaian spatial bersama-sama dengan peruntukan sub-
band ortogon. AO-IGS-FFR dan HO-IGS-FFR telah dipertingkatkan lagi pemprosesan
sel daripada asas FFR-3 sehingga 65% dan 72.2%, masing-masing. HO-IGS-
FFR berfungsi 7.1% lebih baik daripada AO-IGS-FFR dengan 26.7% penurunan
dalam kepuasan pengguna dan kerumitan yang berlebihan. Walaupun, AO-IGS-FFR
kompromi peruntukan jalur lebar sub-optimum, ianya merupakan skim kerumitan yang
rendah dan boleh mengurangkan ICI dengan kepuasan pengguna yang tinggi. IGS-
FFR teroptimum boleh digunakan dalam rangkaian OFDMA multisel geometri tidak
teratur berbagai-bagai di masa depan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Future cellular systems are changing rapidly because of the proliferation
of smart phones, tablets and other media hungry devices. Specifically with the
advancement of the smart gadgets, the demand for broadband application services has
dramatically increased over the past few years [1]. Recent Ericsson Mobility Report
indicates that the exponential growth in the mobile data traffic will reach a nine-fold
escalation by the year 2020 [2]. Global mobile data traffic was 1.5 Exabyte’s (EB) per
month by the end of 2013, raises up to 2.5 EB per month at the end of 2014, which
translates to 66.6 percent growth in the global mobile data traffic recorded in the year
2014. Moreover, updated Cisco industry report for this year forecasts that the mobile
data traffic is expected to grow up to 24.3 EB per month by 2019 [3]. Statistically,
mobile data traffic will grow at a compound annual growth rate (CAGR) of 57 percent
between 2014 and 2019, as shown in Figure 1.1.

Next generation wireless communication systems aim to meet the high
data rates, increased capacity, extended coverage, low complexity and low latency
requirements defined by International Mobile Telecommunications-Advanced (IMT-
A) of the International Telecommunication Union (ITU). The formulation of the Long
Term Evolution (LTE) into LTE-Advanced (LTE-A), make it possible to meet the IMT-
A requirements (peak data rates of 1Gbit/s for the downlink and 500Mbits/s for the
uplink, and extended bandwidth support up to 100MHz) for the fourth generation (4G)
mobile communication [4]. According to the recent Cisco Visual Networking Index
(VNI) report [5], 4G connection has generated 10 times more traffic than a non-4G
connection in 2014 and is responsible for 40 percent of the total mobile data traffic.
These statistics show that the 4G technology is going to be the most preferable choice
for the mobile traffic in the near future.
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Figure 1.1: CISCO mobile data traffic growth forecast by 2019 [3]

The exponential growth in the mobile data traffic is forcing network operators
to significantly enhance their system capacity and coverage. Therefore, efficient radio
resource management is gaining more attention in the wireless communication as it
could open up new prospects for the capacity and coverage enhancement [6]. These
trends have triggered the development of new cellular standards, which incorporates
the OFDMA as a radio access technique because of its capacity gain via frequency
domain diversity as well as multi-user diversity [7].

Due to the scarcity of the frequency spectrum, spatial reuse is a promising
technique to enhance network capacity by allowing spectrum reuse in the OFDMA
based cellular network. However, the aggressive frequency reuse results in the inter
cell interference (ICI) or co-channel interference (CCI), because of the co-channel
deployment in neighboring cells. Therefore, there is always a trade-off between the
support for improved network capacity offered by spatial reuse and the interference it
introduced. Fractional Frequency Reuse (FFR) has been acknowledged as an effective
interference mitigation technique in the OFDMA based cellular systems [8].The basic
mechanism of FFR corresponds to the partitioning of the cell coverage area in spatial
sub-regions and the frequency spectrum in sub-bands. In addition, the spectrum sub-
bands are then allocated to each sub-region in way that avoids the ICI.
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In the wireless networks, signal power and interference received at a typical
user depends mainly on the distance between transmitter and receiver [9]. On the other
hand, the position of the typical user with respect to other Base Stations (BSs) which
are simultaneously using the same channel, highly affects the interference experience
by that user. The Signal to Noise plus Interference Ratio (SINR) experienced by each
user depends on its location, the positions of the interference sources as well as the
instantaneous channel gains. Consequently, the network geometry has a significant
impact on the received SINR and hence the performance of wireless cellular system
crucially depends on the spatial configuration of BSs and network topology [10].
Therefore, it is important to consider the network topology while designing any
interference mitigation scheme.

Finally, to realize the requirement of both cellular operators and users in a
cost effective way, recent development has triggered the induction of intelligence
and autonomous adaptivety (i.e. called self-organization) into the future cellular
networks. Self-organization has been extensively explored and applied in wireless ad-
hoc networks, wireless sensor networks and autonomic computer networks. However,
from the perspective of wireless cellular networks, this concept has gained significant
interest in the recent past [11]. Self-Organizing Networks (SON) concept appears as an
efficient solution, where in the network is capable to autonomously observe and adjust
to different conditions with minimal human intervention [12] and therefore, results in
reduce operational cost [13].

1.2 Problem Statement

In order to meet the ever increasing capacity demand for the mobile broadband
applications and services, next generation cellular systems are targeting aggressive
frequency reuse due to the scarcity of frequency spectrum, [14]. The frequency reuse
of one (Reuse-1) is the example of such aggressive frequency reuse, where in, all the
available radio resources are allocated at every cell of the network. Such frequent
frequency reuse increase the spatial spectrum efficiency and the network capacity, at
the expense of increased ICI [8]. Therefore, ICI is the prominent limiting factors
which affect the users’ ability to achieve the desired quality-of-service (QoS) [13].
Furthermore, the ICI problem is more severe at the cell edges [15].

Due to the above mentioned challenge, interference mitigation is the primary
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interest of both the academic and industry communities [16]. Review on the
present interference management approaches for OFDMA based cellular networks are
presented in Chapter 2, section 2.5. It is found that, to enhance the performance of the
cellular network, FFR is an effective ICI mitigation approach [8, 17]. FFR is attractive
due to its low complexity and significant coverage improvement for cell edge users
[18]. The main objective of FFR is to improve the SINR and system throughput by
avoiding the ICI through orthogonal sub-band allocation specifically at the cell edge
region. In FFR, each cell is allocating its resources in a way such that to minimize the
overall interference experienced in the network and to maximize the spatial reuse [19].

In literature FFR has been used mostly with perfect cellular geometry models
such as a hexagonal grid model (HGM), where each cell has a symmetrical coverage
region [20]. However, in the realistic deployment of the cellular systems it is
impractical to achieve an exact degree of symmetry [21]. In realistic deployment,
where the cellular layout is irregular, not only propagation conditions vary significantly
from cell to cell, but also, azimuths are not aligned and hence, cells experience vast
difference of ICI [22]. As a consequence, the cell edge region may differ in terms of
size and interference levels. Therefore, the performance of basic FFR techniques is
poor in the irregular geometry cellular deployment [23].

Thus, network topology considered for any interference mitigation scheme
plays an important role in the performance. The network topology consideration
has triggered recent research on FFR with irregular geometry cellular networks
[19, 24, 25]. However, almost all of the previous work on FFR on irregular geometry
model only accounts for simplistic FFR with only two regions (cell-center and cell-
edge) and the cell sectoring has not been taken into account [26]. Moreover, dynamic
spectrum partitioning has not been adopted in the FFR configuration for irregular
geometry multicellular networks in order to support the diverse users’ traffic demands.
Thus, there is a need to develop an ICI mitigation using FFR, which considers sectoring
and dynamic spectrum partitioning for irregular cellular geometry based OFDMA
multicellular networks while realizing full frequency reuse.

1.3 Research Objectives

The main goal of this research is to mitigate ICI in the irregular geometry
OFDMA multicellular system through improving the system spectrum efficiency and
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enhancing the system throughput. The specific objectives of the research are;

• To develop FFR scheme which considers sectoring and dynamic spectrum
partitioning for irregular geometry OFDMA multicellular network.

• To develop an enhanced FFR scheme for the irregular geometry multicellular
network to optimize the system performance in terms of achievable throughput.

The proposed FFR scheme is defined as Irregular Geometry based Sectored- Fractional
Frequency Reuse (IGS-FFR). The IGS-FFR scheme has been optimized by adopting
two different techniques and defined as Enhanced-IGS-FFR (eIGS-FFR). In the
first optimization approach auction mechanism is adopted to optimize IGS-FFR and
is named as AO-IGS-FFR. Then in the second optimization approach, Hungarian
method is adopted to optimize IGS-FFR and is named as HO-IGS-FFR scheme. The
performance of the proposed FFR schemes is evaluated in terms of cell achievable
throughput, user satisfaction, and throughput with respect to different load conditions.

1.4 Scope of the Research

In the multicellular OFDMA network, the ICI occurs when the overlapping
cells are utilizing the same frequency spectrum. This research mainly focuses on the
ICI issue in the OFDMA based multicellular network operating in the downlink. The
OFDMA is selected as a multiple access technique in the downlink as it offers the
flexibility while allocating the frequency spectrum resources based on the channel
quality, through its inherent feature of multi-user diversity. Specifically, the Frequency
Division Duplexing (FDD) [27] access mode of the OFDMA downlink transmission is
assumed in this thesis.

This research focuses on mitigating ICI in the irregular geometry based
OFDMA multicellular network. Stochastic geometry based model is used to abstract
the position of the BSs, which enables the realistic interference computation by
considering the random distances between the neighboring cells. The users are
assumed to be connected to the nearest BSs. Consequently, the coverage region of
each cell is irregular or Voronoi tessellation. Self-organized ICI mitigation schemes
are developed for the irregular geometry based OFDMA multicellular network. The
proposed schemes are self-organized in the scope that each cell of the network
autonomously decides its spectrum partition based on the load condition, spectrum
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requirement and channel conditions. Therefore, the proposed interference mitigation
schemes are aware of the diverse user traffic demands and the channel quality.

First, the IGS-FFR scheme is developed to mitigate the ICI in the irregular
geometry based OFDMA multicellular network. The objective of this scheme is to
achieve the full frequency reuse (Reuse-1) to meet the capacity demand. To achieve
the full frequency reuse, the proposed scheme divides the cell into cell-center and cell-
edge region, where the cell-edge region is further divided into a number of sectors.
The resultant cell-center and sectors are defined as sub-region of the cell, and will be
used throughout this thesis. Due to the irregular geometry, the resultant sub-regions
are different in terms of coverage area and hence, in load distribution. The IGS-FFR
scheme dynamically allocates the frequency spectrum (sub-band) to each sub-region
of the cell, according to the traffic demand of each sub-region. Moreover, to mitigate
the ICI, the proposed scheme maintains the orthogonality in the spectrum sub-band
allocation.

The eIGS-FFR schemes is the enhancement of the IGS-FFR scheme in terms
of optimal bandwidth allocation to the individual users of each sub-region of the
cell. First, AO-IGS-FFR scheme is developed based on the game theoretic auction
mechanism for optimal sub-carrier allocation in the irregular geometry OFDMA
multicellular network. The AO-GOS-FFR is distributive in nature, where users are
allowed to request for multiple sub-carriers, according to their traffic demand and
channel condition. However, in order to avoid the complexity issue, the users are
restricted to request for only one combination of the sub-carriers of their choice in one
allocation time. On the other hand in the second approach, HO-IGS-FFR is developed
based on Hungarian method to optimally allocate the sub-carriers to users in each sub-
region based Channel Quality Information (CQI).

In this research, the BSs are considered to be equipped with an omni-directional
transmission antenna configuration for the cell-center region, and a directional antenna
transmission configuration for the cell-edge region. The directional antenna pattern
depends on the number of sectors in the cell-edge region, for example, for the a three
sectors cell, the BS is equipped with 120o directional antenna. Moreover, the antenna
configurations are considered without any power control ability. This is due to the fact
that the total transmission power of the BS is considered to be uniformly distributed
across the amount of spectrum. Furthermore, this research considered the network
users with heterogeneous traffic demand. The proposed schemes are evaluated by
MATLAB simulation, considering the 3GPP model for the parameter settings.
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1.5 Research Contribution

The major contributions of the thesis are listed as follows;

• Development of Sectored-FFR for the Irregular Geometry Multicellular
Network

FFR has been acknowledged as an efficient scheme to avoid the ICI in OFDMA
multicellular systems. The basic mechanism of FFR corresponds to the
partitioning of the cell coverage area in spatial regions, where each sub-region
is assigned with different frequency sub-bands in order to avoid the interference.
However, in case of irregular geometry cellular network, partitioning of the
cell resultants in sub-regions of varying coverage, number of users and load
conditions. Therefore, each sub-region has a different spectrum requirement.
In literature, almost all of the previous works on FFR with irregular geometry
network models account for two sub-regions, cell-center and cell-edge. Cell
sectoring has not been included in the FFR for irregular geometry networks.
In this thesis, the sectored FFR scheme is developed for irregular geometry
network, where the cell coverage area is partitioned into cell-center and cell-
edge region, the cell edge is further divided into a number of sectors. The
frequency spectrum is accordingly partition into a number of sub-bands, for each
sub-region of the cell. The sectoring of the cell-edge region make it possible to
fully utilize the frequency spectrum, by orthogonaly allocating the spectrum sub-
band to each cell-edge region sector in the neighboring cells, in order to mitigate
ICI in multicelluar network.

• Dynamic Spectrum Allocation

The developed IGS-FFR and eIGS-FFR scheme are designed to dynamically
allocate the spectrum resource to each sub-region, according to the spectrum
requirement and traffic demand.

• Optimized bandwidth allocation

The IGS-FFR is optimized in terms of optimal bandwidth allocation to the
individual users of each sub-region of the cell. In the IGS-FFR scheme the
sub-bands are specified for each sub-region of the cell. However, the optimized
bandwidth resources for the individual users are not specified. The eIGS-FFR
is developed to optimally allocate the bandwidth resources to the users using
two different approaches. AO-IGS-FFR is developed based on game theoretic
auction mechanism whereas, HO-IGS-FFR is developed based on Hungarian
method. In both, AO-IGS-FFR and HO-IGS-FFR, the sub-carriers are optimally
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allocated to maximize the throughput of every users in the cell, and hence the
overall throughput is maximized.

1.6 Significance of the Research

The proposed FFR schemes for the irregular geometry based OFDMA cellular
system can contribute towards realizing self-organizing networks (SON). This is
because the proposed IGS-FFR scheme is able to adapt to the network variations
and automatically implement the proposed spectrum allocation according to the
requirement when the current spectrum partition is no longer valid. Note that the
deployment of the proposed self-organized spectrum assignment schemes are not
limited for single tier macro-cell network.The proposed scheme can be an excellent
fit to the successful deployment of the Heterogeneous Network (HetNet).

In the femtocell network, Femto Base Stations (FBSs) are randomly deployed
by end users within the macrocell coverage area. The number and locations of FBSs
can continuously vary. Classical network planning tools would not be able to configure
and optimize a femtocell network. Therefore, the FBSs need to be self-organized
in order to autonomously integrate into the radio access network [28]. Moreover,
to efficiently utilize the available resources in the femtocell network, frequency
spectrum is shared by macrocell and femtocell. However, this type of deployment
results in cross-tier interference because of the co-channel deployment. The proposed
interference mitigation scheme can be applied to avoid the interference by allocating
orthogonal spectrum band to macro and femto users. Therefore, the proposed scheme
is feasible in the successful deployment of the HetNets.

The proposed interference mitigation scheme can also be applied to Device-
to-Device (D2D) communications [29], where the co-channel deployment will
cause interference that would limit the performance gain of this technology. In
D2D communication, the implementation of the proposed self-organized spectrum
allocation schemes is feasible by ensuring the orthogonal sub-band allocation in the
multi-tier devices. Similarly, in the Machine-to-machine (M2M) communication
[30], which has been acknowledged to provide ubiquitous connectivity among
communication-enabled devices in an unprecedented way, thus enabling in parts
the Internet of Things (IoT) [31]. To improve the spectral efficiency, the same
spectrum utilized for H2H (Human-to-human) communications can be reused for
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M2M communications. This will increase the spatial spectrum efficiency and network
capacity at the expense of increased interference. The proposed IGS-FFR scheme can
be utilized to mitigate the interference in the M2M communication and 5G technology
[32], by dynamically allocate the spectrum resources in the self-organized fashion.

1.7 Thesis Outlines

This thesis is organized as follows. Chapter 2 can be mainly composed of two
main discussions, the theoretical background and the literature review. The theoretical
background elaborates the technical aspects and fundamental features of OFDMA
based systems, cellular network modeling, auction theory and Hungarian method. The
literature review part of the chapter 2 covers the discussions on the existing interference
mitigation approaches available in the literature, both for regular and irregular cell
geometry OFDMA networks. The prior ICI approaches are analyzed based on their
potentials and shortcomings which eventually leads towards the research motivations
of this thesis.

Chapter 3 presents the design approach of the proposed ICI mitigation scheme
for irregular geometry based OFDMA multicellular network. The basic design concept
of IGS-FFR and eIGS-FFR schemes are presented in detail. The algorithmic flow
charts for the proposed schemes are provided and discuss in detail. Moreover, chapter
3 also provides the specific detail of the system model, network topology and channel
model. System performance metrics used to evaluate the network performance of the
proposed schemes are provided and described. Furthermore, the chapter includes
the description of the numerical and simulation tool using MATLAB, whereas its
implementation concept is elaborated using functional blocks.

The formulation of the IGS-FFR for the ICI mitigation in the irregular geometry
multicellular network is presented in the Chapter 4. The formulation is followed by the
detail description of the IGS-FFR scheme. Then, the performance analysis of IGS-FFR
scheme in comparison to the basic FFR schemes, when applied to irregular geometry
networks, is presented.

Chapter 5 presents the formulation of the eIGS-FFR scheme. The formulation
is followed by the detail description of AO-IGS-FFR and and HO-IGS-FFR. Then, the
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performance analysis of the AO-IGS-FFR and HO-IGS-FFR schemes in comparison
to the basic FFR-3 scheme is provided.

Finally, Chapter 6 summarizes the significant achievements of IGS-FFR and
eIGS-FFR schemes along with the recommendations for the future works.
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