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ABSTRACT 

 

 

 

 

 Most motorcycles in developing countries use carburetor systems as fuel 

delivery method especially for models with cubic capacity of less than 350 cc. 

However, small gasoline carbureted engines suffer from low operating efficiency, 

high fuel consumption and high level of hazardous emissions. In recent years, 

Electronic Fuel Injection (EFI) technology has been applied to small engine 

motorcycles as well. EFI system has better fuel economy and can reduce harmful 

emissions by correctly calculating suitable amount of fuel to be injected into the 

combustion chamber. One way to achieve this is by accurately estimate the engine 

load by using the in-cylinder Air Mass Flow (AMF) rate of the engine. Most of the 

control schemes in modern system either approximate the AMF near the throttle 

plate using Mass Air Flow (MAF) sensor or in the intake manifold using Manifold 

Absolute Pressure (MAP) sensor. This work presents a more economical approach to 

estimate the AMF by using only the measurements of throttle position and engine 

speed, that is, without using the MAF sensor or the MAP sensor to estimate the AMF 

in intake manifold, resulting in lower implementation cost. The estimation is done 

via two-stage multilayer feed-forward neural network with combinations of 

Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and 

Particle Swarm Optimization (PSO) algorithm. Based on the results in 20 runs, the 

second variant of hybrid algorithm yields a better network performance with a mean 

squared error (MSE) of 1.8308 by estimating the AMF closely to the simulated AMF 

values compared to using the first variant of hybrid algorithm (MSE of 2.8906), LM 

(MSE of 8.0525), LM with BR (MSE of 3.5657) and PSO (MSE of 133.7900) alone. 

By using a valid experimental training data, the estimator network trained with the 

second variant of the hybrid algorithm showed the best performance, with MSE of 

1.9863, among other algorithms when used in an actual small engine fuel injection 

system. 
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ABSTRAK 

 

 

 

 

Kebanyakan motosikal di negara-negara membangun menggunakan sistem 

karburator sebagai kaedah penghantaran bahan api terutamanya bagi model kapasiti 

enjin kurang dari 350 cc. Walau bagaimanapun, enjin petrol kecil bersistemkan 

karburator mempunyai kecekapan operasi yang rendah, penggunaan bahan api yang 

tinggi dan tahap pelepasan berbahaya yang tinggi. Dalam tahun-tahun kebelakangan 

ini, teknologi Suntikan Bahan Api Elektronik (EFI) telah digunakan untuk enjin 

motosikal kecil juga. Salah satu cara untuk mencapainya adalah dengan 

menganggarkan beban enjin dengan tepat menggunakan kadar Alir Jisim Udara 

(AMF) di dalam silinder enjin. Kebanyakan kaedah dalam sistem moden 

menganggarkan AMF berhampiran dengan plat pendikit menggunakan penderia 

Jisim Aliran Udara (MAF) ataupun di dalam pancarongga pengambilan dengan 

menggunakan penderia Tekanan Mutlak Pancarongga (MAP). Kajian ini 

membentangkan satu pendekatan yang lebih menjimatkan untuk menganggar AMF 

di dalam pancarongga pengambilan dengan hanya menggunakan ukuran kedudukan 

pendikit dan kelajuan enjin, tanpa menggunakan penderia MAF ataupun penderia 

MAP yang membawa kepada kos pelaksanan yang rendah. Anggaran dilakukan 

melalui dua peringkat jaringan neural berlapis bersuap hadapan dengan gabungan 

algoritma Levenberg-Marquardt (LM), algoritma Regularisasi Bayesian (BR) dan 

algoritma Pengoptimuman Kerumunan Zarah (PSO) sebagai algoritma latihan. 

Berdasarkan keputusan dalam 20 larian, algoritma hibrid yang kedua menghasilkan 

prestasi rangkaian yang lebih baik dengan ralat min kuasa dua (MSE) 1.8308 dengan 

menganggarkan AMF hampir dengan nilai AMF simulasi berbanding dengan hanya 

menggunakan algoritma hibrid yang pertama (MSE 2.8906), LM (MSE 8.0525), LM 

bersama BR (MSE 3.5657) dan PSO (MSE 133.7900) sahaja. Jaringan penganggar 

yang dilatih dengan algoritma hibrid yang kedua menunjukkan prestasi yang terbaik, 

dengan ralat min kuasa dua (MSE) sebanyak 1.9863 berbanding dengan algoritma-

algoritma lain pada sistem suntikan bahan api berenjin kecil yang sebenar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

 Motorcycles equipped with a carburettor system has become the main option 

of transportation in many countries around the world since the early 1910s. Interests 

in motorcycles have been the highest in Asia with an estimated 360 million 

motorcycles on road out of the total 455 million motorcycles worldwide in 2010. 

Approximately, there are about 69 motorcycles per 1,000 people. Figure 1.1 shows 

the distribution of worldwide motorcycles in 2010, with Asia accounted for 79% of 

the number, followed by Europe (8.5%) and South America (5%). In Asia, China has 

the most motorcycles (110 million), followed by India (82 million), Indonesia (60 

million) and Vietnam (31 million). 

 

 

 

Figure 1.1: Registered motorcycles in year 2010 throughout the world [1] 
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 There has been a continuous growth in motorcycle use especially in the third 

world countries such as India, China, and Vietnam as a result of up-and-coming 

economies, enlarged urbanization, the improvement of infrastructure, and personal 

wealth [2]. Furthermore, an increase in fuel price has also forced many people to 

choose motorcycles as means of transport for work and leisure instead of cars. In 

Malaysia, interest in motorcycle as the main choice of transport especially for 

working citizens has increased incessantly and it is ranked as the highest 

transportation at the end of 2013 as shown in Figure 1.2.  

 

 

 

Figure 1.2: Registered vehicles in Malaysia at the end of 2013 [3]. 

 

 

 According to Figure 1.2, motorcycle (46.6 %) dominates other vehicles and it 

rivals the number of registered car (44.2%). This shows the high usage and demand 

of motorcycles in Malaysia and it is believed that this trend will continue for the next 

5 years. The total accumulated registered motorcycles in Malaysia as reported by the 

Road Transport Department (JPJ) from year 2009 to 2013 are shown in Figure 1.3. 
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Figure 1.3: Total accumulated registered motorcycles from 2009 until 2013 in 

Malaysia [3]. 

 

 

 From the statistics shown in Figure 1.3, the usage of motorcycles by 

Malaysians has increased linearly from the year 2009 to 2013 at the rate of 5 to 7 

percent, with 2009 as the reference year. This is mainly due to the increased fuel 

price, lower travel time and lower cost of owning and maintaining the low-capacity 

engine motorcycles [4]. It is estimated that most of them are motorcycles with cubic 

capacity of less than 250cc that are equipped with the carburettor system. 

 

 

 However, small gasoline fuelled engines that operate using carburettor system 

suffers from low operating efficiency, apart from producing higher level of 

hazardous emissions to the environment. Most of the harmful emissions come from 

motorcycle models that do not have the catalytic converter in the exhaust part such as 

the carburettor-type low-capacity engines. Catalytic converters reduce pollutants by 

processing the exhaust gases by accelerating the chemical process of oxidation for 

hydrocarbons (HCs) and carbon monoxide (CO) to water vapour (H2O) and carbon 

dioxides (CO) and reduction of nitrogen oxides (NOx) to nitrogen (N2). Then, it has 

long been proven that for maximization of efficiency, and minimization of harmful 

emissions, the correct amount of fuel and air mixture to create a complete 

combustion in the engine is that the mass of air should be 14.7 times the mass of fuel 

[5]. This is known as ‘stoichiometric’ mixture, which refer to an ideal mixture of air 
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and fuel. The ratio of this mixture, which is 14.7 (14.7 mass of air to 1 mass of fuel), 

is commonly known as air to fuel ratio (A/F). This is illustrated in Figure 1.4 that 

describes the relationship between emission and A/F of a gasoline engine.  

 

 

 

Figure 1.4: Emission and A/F relationship chart for gasoline engine 

 

  

 According to Figure 1.4, when the A/F ratio is at 14.7 to 1, ideal mixture of 

air and fuel (stoichiometric ratio) is obtained and these conditions are the best for 

complete combustion.  Complete combustion ensure the release of all the heat energy 

in the fuel.  If the combustion is complete, very little unburned fuel is left.  However, 

if the combustion is incomplete, (either learner or richer) various pollutants are 

produced. There are three primary pollutants caused by poor combustion which are 

carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx).  The center 

vertical line represents a 14.7 to 1 A/F.  The left side of this line indicates the engine 

is running richer (any mixture less than 14.7), which means there is more fuel 

substance than air.  The right side of this line means the engine is running leaner (any 

more than 14.7), which means that there is less fuel substance than air.  The three 

curves illustrates the pollutants produced in richer and leaner mixtures.  For example, 

the leaner the A/F, the more NOx being produced.  On the other hand, the richer the 

A/F, the more CO and HC being produced.  This concludes that the closer the A/F is 

to 14.7 to 1, the less pollution being produced. 
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 Fundamentally, it is important to aim for this mixture in any engine design in 

order to reduce emissions. Motorcycles with conventional carburettor system must, 

as much as possible, follow this stoichiometric mass ratio. However, the use of 

carburettor cannot closely follow this required ratio because the rate of air and fuel 

going into engine cannot be controlled. The carburettor operates mechanically and it 

is essentially a tube through which filtered air flows from the motorcycle’s air intake. 

Within this tube, there is a narrowing part, or so-called venturi, where a vacuum is 

created. In this venturi, there is a small hole called a jet which is fed fuel via the float 

chamber. The float chamber is a container that filled with fuel. The amount of fuel in 

this container is set by a float. The vacuum created in the venturi sucks in fuel from 

the float chamber, which is at ambient pressure. The faster the filtered air comes in 

through the carburettor throat, the lower the pressure in the venturi and the higher 

pressure difference between the venturi and the float chamber. Hence, more fuel 

flows out of the jet and mixes with the air stream. As there is no way to monitor A/F 

in the engine’s cylinder, the accurate amount of fuel needed for stoichiometric A/F 

cannot be determined or controlled. Thus, a poor mixture is produced that led to 

incomplete combustion and produced harmful exhaust emissions.  

 

 

 The emission gases like carbon dioxides (CO2) and nitrous oxides (NOx) are 

known as principal greenhouse gases that produce a green-house effect and polluted 

the air. The greenhouse effect is caused by the greenhouse gasses at the atmosphere 

that absorb radiation within the thermal infrared range. Malaysia follows emission 

standard known as Euro 2 since 2009. However, the enforcement towards 

motorcycles are not sufficient and causes serious air pollution problem in the country. 

The sources of air pollution in Malaysia are shown in Figure 1.5. 
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Figure 1.5: Sources of air pollution in Malaysia [6]. 

 

  

 The pie chart above clearly indicates that the emission from transportations is 

the biggest contributor to air pollution (60%). Other sources contributing to air 

pollution were industrial emission, 19%; bush fires, 13%; air conditioning, 6% and 

open burning at waste disposal sites, 3%.  From the 60% sources of air pollution by 

motor vehicle, the motorcycle contributes a large part in it compared with other types 

of vehicle. Therefore, in recent years, an embedded electronic fuel injection system 

in modern technology, which replaces the conventional carburettor system in the new 

motorcycle models, has helped reduced the level of pollution.  

 

 

 As for year 2005 and above, most of the high capacity motorcycles have used 

electronic fuel injection system (EFI) which is more efficient and reliable. The main 

function of fuel injection system (FIS) is for metering the fuel. Fuel metering is the 

process of determining the necessary amount of fuel and its delivery into the engine. 

By using FIS, effective combustion can be achieved and nearly meet the required 

A/F ratio. Thus, cleaner exhaust emissions are achieved and thus reduce the pollution 

to the environment.  
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1.2 Problem Statement 

 

 

 As discussed earlier, most of the small-engine vehicles used in developing 

and poor countries are of the carburettor type that are very low in efficiency and 

produce high level of hazardous emissions. The cost of FIS-type engine are, however, 

very high. Therefore, the development of a low-cost FIS for small motorcycle engine 

is important as it will provide a means for even the low-income users to share the 

advantages of FIS and care for the environment at the same time.  

 

 

 One way to achieve this is by accurately estimating the engine load by using 

the in-cylinder air mass flow rate (AMF) of the engine. Most of the control schemes 

in modern FIS either approximated the AMF near the throttle plate using mass air 

flow (MAF) sensor or in the intake manifold using manifold absolute pressure 

(MAP) sensor. AMF estimation with the aids of MAF sensor can be reliable but 

usually end up in high FIS cost due to design complexity. This is opposite to the one 

that uses MAP sensor, which is much cheaper and simpler FIS but less accurate in 

the AMF estimation. However, both approaches involve some physical parameter 

calculations, which use lots of look-up tables and polynomial expressions. System 

failure can happen if either of these sensors malfunction in some way. Even though 

there is an advance FIS that utilizes both of these sensors, this lead to higher 

production cost and more complex system. 

 

 

 Thus, the need of a method to estimate the AMF without using either sensors 

is important as it will certainly reduce the cost of the system. With this method, the 

system process can be made much simpler, which do not involves computations like 

look-up tables and polynomial expressions. An accurate engine load estimation is 

important as it will affect the performance of the engine. With an accurate load 

estimation, an accurate amount fuel to be delivered to the engine can be obtained for 

optimum engine performance. 
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1.3       Objective of the Study 

 

 

 This study embarks on the following objectives: 

 

i. To develop a neural network model as an estimator to estimate a small 

engine load by estimating the air mass flow rate in intake manifold so 

that lower production cost of the system can be achieved by 

eliminating the usage of sensors. 

ii. To identify and develop a suitable training algorithm to train the 

estimator in order to achieve an optimum performance. 

iii. To ascertain the efficiency of the developed estimator by 

incorporating a simple controller in the control system to control air to 

fuel ratio of the engine. 

 

 

 

 

1.4       Limitation and Scope of the Study 

 

 

 All the works in this study are focusing on the limitations and scopes below: 

i. The engine load or the air mass flow rate (AMF) in the cylinder of the 

engine is assumed to be the same as in the intake manifold so that a 

speed-density approach can be used for control system. 

ii. Neural network estimator model is focused on a single cylinder 

motorcycle petrol engine with 4-strokes configuration. 

iii. An electronic fuel injection system is used as the fuelling system of 

the engine. 

iv. MATLAB software is used for analysis in simulation and 

experimental works. 

v. A Mainline Dynolog Dynamometer test bench and system are used for 

experimental data collection.  
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1.5       Contribution of the Research 

 

 

 This study leads to some contributions as follows: 

i. An engine load estimator that can lead to low-cost FIS.  

ii. A reliable hybrid training algorithm for neural network model that has 

been proved its generalization and mapping capability as an estimator. 

iii. Verification on the effectiveness of the above approach via simulation 

and experimental validation. 

 

 

 

 

1.6       Outline of the Thesis 

 

 

 This thesis consists of five chapters. Chapter 1 is the introduction which 

summarize the purpose of the study. Chapter 2 is the literature review which contains 

an explanation of the single cylinder motorcycle engine, fuel delivery system and a 

review of the works done by past researchers on fuel injection control, engine load 

estimation and training algorithms for neural network. Chapter 3 explains the 

methodology developed for engine load estimation in this study. Chapter 4 contains 

results and discussion and chapter 5 is conclusion followed by contribution of the 

research and recommendations for future works. 
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