POLARIZATION RECONFIGURABLE ANTENNAS FOR
SPACE LIMITED MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM

MOHAMED NASRUN BIN OSMAN

UNIVERSITI TEKNOLOGI MALAYSIA
POLARIZATION RECONFIGURABLE ANTENNAS FOR SPACE LIMITED MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM

MOHAMED NASRUN OSMAN

A thesis submitted in fulfilment of requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2016
Specially dedicated to my beloved parent, Che Ah bt Saleh and Baharum b Hanapiah
my late father, Osman b Bakar, my wife and daughter, Dyia Syalelyana bt Md Shukri
and Dhiyaa Naqeesya, my parent-in-laws, and my siblings with love and care.
ACKNOWLEDGEMENT

First of all, praise and thank to ALLAH for His continuous blessings, strength and guidance given to me in completing this study.

I was contact with many people throughout this period of study. In particular, I would like to express my heartfelt appreciations to my supervisor, Prof. Dr. Mohamad Kamal A. Rahim and my co-supervisors, Dr. Mohd Fairus Mohd Yusoff and Dr. Mohamad Rijal Hamid for their encouragements and advises. Not to forget Dr Peter Gardner and Dr Muzammil Jusoh. Their valuable guidance, comments and constant endeavour massively help me to perform research on the right path and organized way, to ensure the research conducted smoothly.

I am also indebted to Universiti Malaysia Perlis and Ministry of Education for funding my study. I also would like extend my great gratitude to all P18 members; UTM’s and UniMAP’s lecturers and colleagues, for the sharing of knowledge, ideas, and tips which absolutely helping me a lot.

My greatest thanks to my family; especially to my parent, parent-in-law and siblings whose has given me unlimited encouragement, support and caring. My deepest appreciation to my wife, Dyia Syaleyana Md Shukri for her enormous understanding, moral support and endless love that are the key of my strength to complete the study.

Finally, I would like to thanks to all person where their names are not mentioned here but have been a great helps and contributions during this journey of study whether it’s directly or indirectly. Thank you for all of your kindness and generosity.
ABSTRACT

Wireless communication undergoes rapid changes in recent years. More and more people are using modern communication services, thus increasing the need for higher capacity in transmission. One of the methods that is able to meet the demands is the use of multiple antennas at both link ends known as Multiple Input Multiple Output (MIMO) system. However, for the space limited MIMO system, it is relatively difficult to accomplish good performance by using conventional antennas. Therefore, to further improve the performance offered by MIMO, Polarization Reconfigurable Antennas (PRAs) can be adopted. The diversity in polarization can be exploited to increase channel capacity. Moreover, the use of PRAs can also provide savings in terms of space and cost by arranging orthogonal polarized together instead of two physically space separation antennas. Here, single and dual port PRAs are proposed. Two techniques are deployed to achieve the PRAs are slits perturbation (switches on the radiating patch) and alteration of the feeding network (switches on the ground plane). Switching mechanism (ideal and PIN diode) is introduced to reconfigure the polarization between left-hand circular polarizations, right-hand circular polarizations, or linear polarization, operating at wireless local area network frequency band (2.4 – 2.5 GHz). Furthermore, by exploiting the odd and even mode of the coplanar waveguide structure, dual ports PRAs are realized with the ability to produce orthogonal linear polarization (LP) and circular polarization (CP) modes simultaneously. Good measured port polarization isolations ($S_{21}$) of -16.3 dB and -19 dB are obtained at the frequency of 2.45 GHz for configuration A1 (orthogonal LP) and A2 (orthogonal CP), respectively. The proposed PRAs are tested in 2 x 2 MIMO indoor environments to validate their performances by using scalar power correlation method when applied as receiver in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Channel capacity improvement has been achieved for spatial diversity (92.9% for LOS and 185.9% for NLOS) and polarization diversity (40.7% for LOS and 57.9% for NLOS). The proposed antenna is highly potential to be adopted to enhance the performance of the MIMO system, especially in dealing with multipath environment and space limited applications.
Dewasa ini, komunikasi tanpa wayar telah berubah dengan pesatnya. Semakin ramai orang telah menggunakan perkhidmatan komunikasi moden, sekaligus meningkatkan permintaan untuk kapasiti yang lebih tinggi. Salah satu daripada kaedah untuk memenuhi permintaan ini adalah dengan menggunakan beberapa antena di kedua-dua bahagian sistem perhubungan, iaitu menggunakan sistem Berbilang Masukan Berbilang Keluaran (MIMO). Walau bagaimanapun, untuk mencapai prestasi yang baik di dalam sistem MIMO ruang terhad dengan menggunakan antena konvensional secara relatifnya agak sukar. Maka, untuk meningkatkan prestasi MIMO, antena-antena dengan Pengutuban Boleh Ubah (PRAs) telah digunakan. Pengutuban kepelbagaian boleh dimanipulasikan untuk meningkatkan kapasiti saluran. Tambah lagi, penggunaan PRAs juga boleh menjimatkan ruang dan kos, dengan meletakkan antena berpengutuban serenjang bersama berbanding dua antena berjarak dengan ruang. Di dalam kajian ini, satu dan dua pangkalan PRAs dicadangkan. Dua teknik telah diguna untuk menghasilkan PRAs, iaitu pengusikan belahan (suis di tampalan terpancar) dan pengubahan rangkaian suapan (suis di satah pembumian). Mekanisme suis (ideal dan PIN diod) telah diperkenalkan untuk mengubah pengutuban antena kepada pengutuban bulatan tangan kiri, pengutuban bulatan tangan kanan atau pengutuban lelurus, yang beroperasi pada jalur frekuensi rangkaian kawasan setempat tanpa wayar (2.4 – 2.5 GHz). Tambah pula, dua pangkalan PRAs dengan kebolehan menghasilkan mod pengutuban serenjang lelurus (LP) dan bulatan (CP) dengan serentak telah dibangunkan dengan menggunakan ciri mod genap dan ganjil struktur sesatah pandu gelombang. Isolasi ($S_{21}$) pengukuran pengutuban pangkalan yang baik telah dicapai pada frekuensi 2.45 GHz, iaitu -16.3 dB untuk konfigurasi A1 (LP berserenjang) dan -19 dB untuk konfigurasi A2 (CP berserenjang). PRAs yang dicadangkan ini telah diuji di dalam senario garis penglihatan (LOS) dan bukan garis penglihatan (NLOS) untuk 2 x 2 persekitaran tertutup MIMO bagi mengesahkan prestasinya menggunakan kaedah hubung kait kuasa skalar apabila diaplikasikan sebagai antena penerima. Peningkatan kapasiti saluran telah dicapai untuk diversiti keruangan (92.9% untuk LOS dan 185.9% untuk NLOS) dan diversiti pengutuban (40.7% untuk LOS dan 57.9% untuk NLOS). Antena yang dicadangkan ini amatlah berpotensi untuk diguna bagi meningkatkan prestasi sistem MIMO, terutama dalam menangani persekitaran pelbagai arah dan aplikasi ruang terhad.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ASBTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction and Background</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statements</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.3 Research Motivations</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.4 Research Objectives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.5 Scope of the Research</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>1.6 Outline of the Thesis</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
## LITERATURE REVIEW

2.1 Introduction  
2.2 Polarization  
2.3 Reconfigurable Antenna  
2.4 Polarization Reconfigurable Antenna  
2.5 Coplanar Waveguide (CPW)  
2.6 Biasing Technique and RF Component  
2.7 Multiple-Input-Multiple-Output (MIMO)  
2.8 Chapter Summary

## RESEARCH METHODOLOGY

3.1 Introduction  
3.2 Methodology  
3.3 Design and Simulation (Stage 1)  
  3.3.1 Design Specification  
  3.3.2 Microstrip Circular Patch Antenna  
  3.3.3 Ideal and PIN Diode  
  3.3.4 Simulation Process in CST Software  
3.4 Fabrication and Validation (Stage 2)  
3.5 Diversity Performances and MIMO Capacity Measurement (Stage 3)  
3.6 Chapter Summary

## SINGLE PORT POLARIZATION RECONFIGURABLE ANTENNA

4.1 Introduction  
4.2 Design A: Polarization Reconfigurable Antenna Using Slit’s Perturbation Technique
4.2.1 Antenna Design, Approach and Configurations 88
4.2.2 Parametric Study 92
4.2.3 Simulation, Measurement and Validation (Ideal Diode) 97
4.2.4 Simulation, Measurement and Validation (PIN Diode) 99

4.3 Slit’s Perturbation Technique: Polarization Reconfigurable Antenna with Fixed Operating Frequency 104
4.3.1 Stage 1: Proof of the Concept (Ideal Diode) 105
4.3.2 Stage 2: Realization of Active Switching (PIN Diode) 111
4.3.3 Bandwidth Improvement 118

4.4 Design B: Modification of Feeding Network Technique 125
4.4.1 Antenna Design, Approach and Configurations 125
4.4.2 Parametric Study 129
4.4.3 Simulation Results 132

4.5 Comparison of the Techniques 136

4.6 Chapter Summary 140

5 DUAL-PORT POLARIZATION RECONFIGURABLE ANTENNA 141

5.1 Introduction 141
5.2 Antenna Design, Approach and Configurations 143
5.3 Measurement and Validation 147
5.4 Analysis and Verification of Discrepancies 152
  5.4.1 Effect of Existence of Glue Layer 152
  5.4.2 Effect of Proper Position to Mount RF PIN Diode 157
  5.4.3 Selection of Type of RF Switches and DC Bias Cable 159
5.5 CPW Slotline with Two Phase Delays 159
5.6 Chapter Summary 164

6 EXPERIMENTAL ANALYSIS OF POLARIZATION
   RECONFIGURABLE FOR MIMO SYSTEMS 164
6.1 Introduction 164
6.2 Diversity Performances Evaluation 166
6.3 Experimental Setup and Scenario 167
6.4 Results and Discussions 172
6.5 Chapter Summary 177

7 CONCLUSION AND FUTURE WORK 178
7.1 Conclusion 178
7.2 Key Contribution 180
7.3 Future Work 181

REFERENCES 184

Appendices A-F 196-223
# LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Class of reconfigurable antennas</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Paper reviews on polarization reconfigurable antennas</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Antenna design using CPW structure</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Performance comparison of PIN diode, FET and RF MEMS [81]</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Different type of switches used in the design of reconfigurable antenna using electronically and optically [84]</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>Techniques of diversity in MIMO system</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>MIMO measurements using RAs</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Design specification of the antenna</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Polarization control via two switches</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of simulated and measured results for all switch configurations</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Switching configurations of the proposed antenna</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of results between ideal and pin diode</td>
<td>118</td>
</tr>
<tr>
<td>4.5</td>
<td>Switching configuration of the multilayer-substrates polarization reconfigurable antenna</td>
<td>120</td>
</tr>
<tr>
<td>4.6</td>
<td>Switching configuration of the proposed antenna</td>
<td>129</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison between Design A (slit perturbations technique) and Design B (feeding networks technique)</td>
<td>139</td>
</tr>
<tr>
<td>5.1</td>
<td>Switching configuration</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulated efficiency for both configurations</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.3</td>
<td>Switching configurations of the proposed antenna</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Antenna polarization configurations of the MIMO measurement for LOS and NLOS scenario</td>
<td>169</td>
</tr>
<tr>
<td>6.2</td>
<td>Computed channel matrix and eigenvalues for LOS and NLOS cases</td>
<td>174</td>
</tr>
<tr>
<td>6.2</td>
<td>Channel capacity results of the 2 x 2 MIMO</td>
<td>175</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The orientation of the polarization (a) LP (b) CP and (c) EP [16]</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>The electric field vectors of the polarization [17]</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The conditions of the CP to be produced</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Polarization sense as a function of $E_x/E_y$ and phase angle [17]</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>The hand rules to determine the polarization sense of the CP [17]</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Geometry of PRAs using technique of perturbation segment (a) chamfering corner [30] (b) L-slits [32] and (c) orthogonal slots [34]</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Geometry of PRA (a) cross-slots switches at the end of slots [40] (b) cross-slots with switches at the center [42], and (c) U-slot [44]</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Geometry of the antennas with switchable CPs sense [49]</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Circularly polarised antenna with switchable polarization sense (a) geometry of the antenna and (b) measured axial ratio and $S_{11}$ [50]</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Geometry of the PRA with loop slots on the ground plane [51]</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Generic view of the “Classic” CPW waveguide line [65]</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Mode of the CPW (a) even mode (b) odd mode [67]</td>
<td>34</td>
</tr>
</tbody>
</table>
2.13 Slotted dipole antenna for frequency reconfigurable antennas [87] 41
2.14 Square patch with L-strips slot for polarization reconfigurability [32] 42
2.15 Reconfigurable antenna with radial stub as biasing network [88] 42
2.16 Rectangular slotted on the ground plane [89] 43
2.17 Reconfigurable ground slotted patch antenna [90] 43
2.18 The geometry of the antenna with PIN diode inserted inside the substrate [91] 44
2.19 A MIMO system [92] 47
2.20 Spatial diversity (physically separated antennas) versus polarization diversity (orthogonal polarizations) [3] 50
2.21 Capacity CDF curves of the proposed antennas (a) pattern only and (b) pattern and polarization [99] 52
2.22 The percentage of capacity improvement versus SNR for (a) LOS and (b) NLOS [100] 53
2.23 Percentage of capacity improvement versus SNR for 5 different locations in an indoor environment (a) measurements (b) simulations [101] 54
2.24 Channel capacity versus different configurations for SNR = 15 dB [102] 55
2.25 CDF plot for RX9 [103] 55
2.26 Summary of relation between RAs and MIMO 61
3.1 Flow chart 64
3.2 Circular patch antenna 68
3.3 PIN diode equivalent circuit (a) forward bias and (b) reverse bias 70
3.4 PIN diode packaging outline [110] 71
3.5 Copper strips representation in the CST software 72
3.6 Polarization reconfigurable antenna with PIN diode 73
| 3.7  | Discrete port position in the simulation | 74  |
| 3.8  | Circuit schematic simulation in CST   | 74  |
| 3.9  | Antenna with biasing network included in the simulation | 75  |
| 3.10 | Antenna fabrication flowchart         | 76  |
| 3.11 | Switching board                       | 77  |
| 3.12 | Rohde & Schwartz ZVL network analyser  | 79  |
| 3.13 | Layout of the radiation pattern, gain and axial ratio measurement | 79  |
| 3.14 | Radiation pattern measurement setup at UniMAP | 80  |
| 3.15 | Radiation pattern measurement at UoB  | 80  |
| 3.16 | The process of 2 x 2 MIMO channel capacity measurement | 82  |
| 3.17 | The summary of the process determining channel capacity | 84  |
| 4.1  | Geometry of the proposed antenna for ideal diode- | 88  |
|      | Front view (left) and Side view (right). |     |
|      | (Dimensions in mm: L= 55, W= 55, L_s= 6.5, L_p= 15.3, W_s= 1,   |
|      | W_2= 1, r= 18.1, d= 5.5) |     |
| 4.2  | Geometry of the proposed antenna for RF PIN diode- | 89  |
|      | Front view (left) and Side view (right). (Dimensions in mm:   |
|      | L= 55, W= 55, L_s= 7, L_p= 15.5, W_s= 1, W_2= 1, r= 17.8,   |
|      | d= 5.25) |     |
| 4.3  | Fabricated proposed antenna for (a) ideal diode and (b) PIN   |
|      | diode | 91  |
| 4.4  | Effect of slit length, L_s (mm) towards the (a) S_{11} and (b) AR | 93  |
| 4.5  | Study on the effect towards (a) S_{11}, and (b) AR when L_s (mm)   |
|      | is varied from 5.5mm to 7.5mm. | 94  |
| 4.6  | Effect of the feeding point, d (mm) towards the S_{11} (dB) result | 95  |
| 4.7  | Effect of the change of switch position, L_p (mm) towards (a) S_{11}, and (b) AR. | 96  |
| 4.8  | Simulated and measured reflection coefficient, S_{11} results for (a) LPs and (b) CPs. | 97  |
| 4.9  | Simulated and measured AR (dB) for CPs operation | 98  |
4.10 Simulated and measured radiation pattern (x-z plane and y-z plane) for (a) C1-LP at 2.436 GHz and (b) C3-LHCP at 2.478 GHz  

99

4.11 Simulated and measured reflection coefficient, $S_{11}$ results for C1-LP and C2-LP  

100

4.12 Simulated and measured reflection coefficient, $S_{11}$ results for C3-LHCP and C4-RHCP  

101

4.13 Simulated and measured normalized radiation pattern for all switches configurations at the resonant frequency for (a) C1-LP, (b) C2-LP, (c) C3-LHCP, and (d) C4-RHCP  

102

4.14 Simulated and measured AR results for C3-LHCP and C4-RHCP  

103

4.15 Simulated reflection coefficient, $S_{11}$ (dB)  

104

4.16 Geometry of the proposed antenna. (a) front view and (b) side view. (Dimensions in mm: $L=55$, $W=55$, $d=5.5$, $r=17.9$, $W_s=1$, $W_b=1$, $L_s=5$, $L_p=15.3$)  

105

4.17 The physical structure of the proposed antenna used in the simulation. (a) C1-LHCP, (b) C2-RHCP, (c) C3-LP.  

106

4.18 Front view photograph of fabricated antenna prototypes. (a) C1-LHCP. (b) C2-RHCP. (c) C3-LP.  

107

4.19 Comparison of simulated and measured reflection coefficient of the proposed antenna. (a) C1-LHCP. (b) C2-RHCP. (c) C3-LP  

108

4.20 Simulated and measured axial ratio  

109

4.21 Simulated and measured normalized farfield radiation pattern at frequency of 2.47 GHz. (a) C1-LHCP. (b) C2-RHCP. (c) C3-LP  

110

4.22 Geometry of the proposed antenna with the integration of biasing mechanism. (a) front view and (b) back view (Dimensions in mm: $L=55$, $W=55$, $d=5.5$, $r=17.9$, $W_s=1$, $W_b=0.3$, $L_s=5$, $L_p=17$, $L_{b1}=5$, $L_{b2}=4$, $L_w=4$.  

112
4.23 Photograph of fabricated antenna prototypes. (a) front view and (b) back view.

4.24 Comparison between simulated and measured reflection coefficient result of the modified structure. (a) Circular polarization. (b) C3-LP.

4.25 Simulated and measured axial ratio of the modified structure.

4.26 Measured normalized radiation pattern of the modified structure. (a) C1-LHCP at 2.47 GHz. (b) C2-RHCP at 2.47 GHz. (c) C3-LP at 2.49 GHz.

4.27 Geometry of the multilayer-substrates polarization reconfigurable antenna. (a) front view. (b) side view.

4.28 Simulated reflection coefficient for all switch configurations

4.29 Simulated AR for CP mode

4.30 Simulated gain for all switch configurations

4.31 3D perspective view of radiation pattern for C2-RHCP at 2.55 GHz.

4.32 E-field at 2.45 GHz for C2-RHCP at the phase (a) 0°, (b) 90°, (c) 180°, and (d) 270°.

4.33 Comparison of simulated reflection coefficient for configuration C2-LHCP with multi-layer of substrate

4.34 Comparison of simulated AR for configuration C2-LHCP with multi-layer of substrate

4.35 Geometry and the biased voltage polarity of the proposed antenna. (top) Front view. (bottom) Back view.

(Yellow colour indicates the metallization of the structure and white colour for substrate)

4.36 Effect of the $L_{dl}$ (mm) towards the (a) $S_{11}$ (dB), and (b) AR

4.37 Effect of the $L_t$ (mm) towards the $S_{11}$ (dB) result

4.38 Effect of the $W_t$ (mm) towards the $S_{11}$ (dB) result
4.39 Simulated reflection coefficient of the proposed antenna for all switch configurations

4.40 Simulated ARs over frequency for CP operations

4.41 Simulated radiation pattern (x-z plane and y-z plane) at 2.45 GHz for configuration (a) A1-LP, (b) A2-RHCP, and (c) A3-LHCP

4.42 Simulated gain over frequency for all switch configurations

4.43 Simulated reflection coefficient and AR between both design (a) CP and (b) LP

4.44 Comparison of simulated AR between both designs

5.1 Geometry and voltage polarity of the proposed antenna. (top) Front view. (middle) Side view. (bottom) Back view. (Yellow colour indicates the metallization of the structure, and white colour for substrate)

5.2 Electric field distribution of the CPW. (a) even mode - Port 1 and (b) odd mode - Port 2

5.3 Photograph of the fabricated antenna (a) front view and (b) back view

5.4 Measured and simulated S-parameters versus frequency of the proposed antenna for (a) A1 and (b) A2

5.5 Measured and simulated AR versus frequency of the proposed antenna for configuration A2

5.6 Measured normalized radiation pattern of the proposed antenna. (a) A1 and (b) A2

5.7 Simulated current distribution for configuration A1. (a) port 1 and (b) port 2

5.8 Simulated current distribution for configuration A2. (a) port 1 and (b) port 2

5.9 Antenna with glue layer thickness, \( t_a \)

5.10 The simulated S-parameters for A1 when varying \( t_a \). (a) \( S_{11} \) (b) \( S_{21} \) and (c) \( S_{22} \)
5.11 The simulated S-parameters for A2 when varying $t_a$. (a) $S_{11}$ (b) $S_{21}$ and (c) $S_{22}$ 156

5.12 The simulated AR for A2 when $t_a$ is varied from 0 mm to 0.5 mm. (a) Port 1 and (b) Port 2 157

5.13 The simulated S-parameters for (a) A1 and (b) A2 when changing the position of negative polarity of PIN diode 158

5.14 Geometry of the proposed antenna (top) front view and (bottom) back view. The dimension of the design antennas are as follows (all unit in millimeters): $L = 90$, $W = 90$, $r = 18.25$, $L_f = 40$, $W_f = 2$, $g = 10$, $W_c = 2.8$, $L_a = 40.75$, $L_b = 24.5$, $L_c = 11$, $L_d = 11.65$, $L_d1 = 13$, $L_d2 = 14.75$, $L_t = 6$, $W_{slot} = 0.5$, $W_t = 4.4$. (Yellow colour indicates the copper area of the structure, and white colour for the substrate) 160

5.15 The simulated S-parameters versus frequency of the proposed antenna for configuration (a) A1 (b) A2 (c) A3 and (d) A4 162

5.16 The simulated axial ratio over frequency of the proposed antenna for CP operations 163

6.1 Simulated and measured ECC of the dual port PRAs 166

6.2 Simulated and measured DG of the dual port PRAs 166

6.3 Laboratory floor layout 168

6.4 Photograph of the microwave laboratory 168

6.5 Channel capacity measurement setup 171

6.6 Reflection coefficient of the monopole antennas 171

6.7 Photograph of the monopole antennas with space separation 172

D1 Photograph of sample printed transparent mask 215

D2 Laminating machine 216

D3 Output of photoresist layer from laminating machine 217

D4 Ultra Violet exposure machine 217

D5 Developer concentration for 4615 dry film 218

D6 Ferric Chloride Etching machine 218

D7 Photoresist stripper chemical 219
## LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP LTE</td>
<td>Third-Generation Partnership Project Long Term Evolution</td>
</tr>
<tr>
<td>AR</td>
<td>Axial ratio</td>
</tr>
<tr>
<td>AUT</td>
<td>Antenna Under Test</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CPs</td>
<td>Circular Polarizations</td>
</tr>
<tr>
<td>CPW</td>
<td>Co-planar Waveguide</td>
</tr>
<tr>
<td>CST</td>
<td>Computer Simulation Technology</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DG</td>
<td>Diversity gain</td>
</tr>
<tr>
<td>ECC</td>
<td>Envelope correlation coefficient</td>
</tr>
<tr>
<td>EP</td>
<td>Ellipse polarization</td>
</tr>
<tr>
<td>FET</td>
<td>Field Effect Transistor</td>
</tr>
<tr>
<td>IMT-Advanced</td>
<td>International Mobile Telecommunications-Advanced</td>
</tr>
<tr>
<td>LHCP</td>
<td>Left-Hand Circular Polarization</td>
</tr>
<tr>
<td>LOS</td>
<td>Line-of-sight</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Polarization</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-Input-Multiple-Output</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non-Line-of-Sight</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>PRAS</td>
<td>Polarization Reconfigurable Antennas</td>
</tr>
<tr>
<td>RAs</td>
<td>Reconfigurable Antennas</td>
</tr>
</tbody>
</table>
RF - Radio-frequency
RF-MEMS - Radio-frequency microelectromechanical systems
RHCP - Right-Hand Circular Polarization
SISO - Single-Input-Single-Output
SNR - Signal-to-noise-ratio
SPDT - Single-polar-double-throw
SVD - Singular Value Decomposition
UNIMAP - Universiti Malaysia Perlis
UoB - University of Birmingham
UTeM - Universiti Teknikal Malaysia Melaka
UTM - Universiti Teknologi Malaysia
VNA - Vector Network Analyser
WiMAX - Worldwide Interoperability for Microwave Access
WLAN - Wireless Local Area Network
## LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta$</td>
<td>Noise</td>
</tr>
<tr>
<td>$H$</td>
<td>Channel Matrix</td>
</tr>
<tr>
<td>$\rho_{mn}$</td>
<td>Power correlation coefficient</td>
</tr>
<tr>
<td>$\text{cov}_{mn}$</td>
<td>Covariance between input and output</td>
</tr>
<tr>
<td>$\sigma_{mn}$</td>
<td>Variance of the input</td>
</tr>
<tr>
<td>$\sigma_{nn}$</td>
<td>Variance of the output</td>
</tr>
<tr>
<td>$\bar{x}$</td>
<td>Mean average input signal</td>
</tr>
<tr>
<td>$\bar{y}$</td>
<td>Mean average output signal</td>
</tr>
<tr>
<td>$C$</td>
<td>Channel capacity</td>
</tr>
<tr>
<td>$\psi_n$</td>
<td>Eigenvalue</td>
</tr>
<tr>
<td>$h$</td>
<td>Thickness of the patch</td>
</tr>
<tr>
<td>$\lambda_o$</td>
<td>Free space wavelength</td>
</tr>
<tr>
<td>$r$</td>
<td>Radius of the patch</td>
</tr>
<tr>
<td>$r_e$</td>
<td>Effective radius</td>
</tr>
<tr>
<td>$f_r$</td>
<td>Resonant frequency</td>
</tr>
<tr>
<td>$\varepsilon_r$</td>
<td>Relative permittivity</td>
</tr>
<tr>
<td>$\nu_o$</td>
<td>Free space speed of light</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>Wavelength</td>
</tr>
<tr>
<td>$\rho$</td>
<td>Correlation coefficient</td>
</tr>
</tbody>
</table>
### LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>196</td>
</tr>
<tr>
<td>B</td>
<td>Taconic RF-35 Datasheet</td>
<td>200</td>
</tr>
<tr>
<td>C</td>
<td>PIN Diode BAR50-02V Datasheet</td>
<td>203</td>
</tr>
<tr>
<td>D</td>
<td>Fabrication Process</td>
<td>215</td>
</tr>
<tr>
<td>E</td>
<td>Sample Date of Power Received</td>
<td>220</td>
</tr>
<tr>
<td>F</td>
<td>MATLAB Programming Coding Channel Capacity Computation</td>
<td>221</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction and Background

In the modern communication systems, there is a need and requirement to have single elements to be multi-functional and able to integrate with various operations. With the rapid growth and evolution of the telecommunication technology has leads to a change of the system conditions to meet current trends and demands from the end user; lower in cost, compact in size and light weight, with enhanced performance. Conventional antenna may face restrictions to meet the requirements and adapt to new conditions due to inflexible characteristics. One solution to overcome this issue is the use of reconfigurable antennas (RAs). The characteristics of the RAs such as frequency/bandwidth, radiation pattern and polarization [1], [2], is capable to be altered, thus providing additional functionality and flexibility to the systems.
The transmissions of the radio signal paths travelling from transmitter to receiver regularly experience the reflection/refraction phenomena caused by obstacles and obstructions such as buildings, vehicles and surrounding natures. For an indoor and confined environment, the occurrences of the reflection/refraction become more crucial and challenging due to wall, equipment and furniture. This phenomena might affect the transmitted signal, thus causing the signal to add up constructively or destructively and vary with different polarization and time while reaching at the receiver [3]. Accordingly, at particular occasions, the effective and reliable communication could be loss as the received signal may decrease and drop below the acceptable value. Therefore, one of the solutions to overcome this problem of multipath fading effect is by using single antenna that capable of offering various types of polarization modes. Polarization reconfigurable antennas (PRAs) are attractive due to the ability to control and switch the polarization between linear polarization (LP), left-hand circular polarization (LHCP) or right-hand circular polarization (RHCP). Besides reducing the fading effect, this type of diversity provides another several advantages such as immune to the interference and minimizing the polarization loss factor that eventually help to ensure the communication reliability.

The use of dual-polarized antenna [4–6] has been applied to several modern telecommunication applications for improving reception quality. In using this method, losses due to polarization mismatch can be reduced. The dual port antennas design can be achieved by co-locating orthogonal polarization together on the similar design. To further enhance the antenna performance, reconfigurable antenna is an effective solution. Although the antenna is excited with fixed dual polarization antenna, it is also capable of exciting between orthogonal LPs or orthogonal circular polarizations (CPs). Hence, instead of exciting with dual-polarized fix polarization, both polarizations also can be switched for selecting the best channel condition for that particular scenario and environment.
A lot of peoples nowadays have used modern communication services in their daily life routines, thus increase the demand and need for higher data rate and capacity in the transmissions. One of the technologies that able to provide capacity improvement is the use of multiple antennas at transmitter and receiver ends, known as Multiple-Input-Multiple-Output (MIMO) systems. Compared to traditional single-input single-output and single-input multiple-output systems, MIMO systems is higher diversity and ability to mitigate multipath fading, which provide higher capacity performance. This leads to more modern wireless communication systems to shift towards MIMO in order to accommodate the demand from the end users. MIMO system is capable of realizing higher throughput without required more bandwidth (BW) and additional power [7].

MIMO system is one of the key and important technologies for the future wireless communication system, such as Third-Generation Partnership Project Long Term Evolution (3GPP LTE), Worldwide Interoperability for Microwave Access (WiMAX), and International Mobile Telecommunications-Advanced (IMT-Advanced). The principal concept of the MIMO is to exploit and make use of space for enhancing the transmission quality and efficiency, consequently able to increase the data rates. Traditionally, MIMO system adopted space separated antenna to avoid mutual coupling between antenna elements [8]. However, for limited space MIMO systems, the mutual coupling between the adjacent antennas becomes more crucial, which could restrict and reduces the system performances [9].

To further enhance the overall performance and increase the speeds of the MIMO system, several techniques are being used such as advanced diversity schemes, smart antenna/beam forming, and new modulation technique such as space shift keying. Moreover, the link quality and reliability can be improved through employing RAs. The diversity special features, such as polarization and pattern, are exploited to increase the signal-to-noise ratio (SNR), which consequently improve the channel capacity [10].
1.2 Problem Statements

The revolution of the wireless communication technology has lead to the change of the system requirement and environmental conditions in order to meet the current demand. However, the inability of the antenna to accommodate and adapt to new operation scenario or feature, such as dealing with limited and confined volume space environment, can limit the system performance. Hence, having multifunctional antennas or reconfigurable antenna will provide additional level of functionality and capability in any particular wireless communication system. Conventional antenna design will face restrictions in following the new trends since the antenna characteristics are inflexible and fixed.

The capacity improvement in MIMO by using spatial diversity like spatial multiplexing, transmit diversity or receive diversity are subject to enough and availability of space [11]. Even though the spatial diversity are extremely potential to increase capacity through space-separated technique, but this technique is not suitable for space-limited MIMO applications such as mobile terminal, compact base station or portable access point due to space is not an advantage to be exploit [12]. Benefits of multiple channels are difficult to be obtained by using spatial diversity due to space limitation. In addition, a physically separation distance about half wavelength is required between two elements in order to have acceptable mutual coupling [13], which result in unsuitable for space-limited MIMO applications.

In space-limited MIMO system, it is relatively challenging to accomplish great performance by employing conventional antenna. Due to this limitation, reconfigurable antenna with polarization diversity is used to enhance the performance of MIMO system without required extra space, bandwidth and power. Hence, space resources can be save and utilize by co-locating orthogonal polarizations on the similar structure, which make
the designed antenna more compact in size. Furthermore, it is extra cost saving compared to physically separated antenna [14]. However, the main challenge is to obtain sufficient isolation between two ports, whilst maintaining good impedance matching with desired polarization sense.

Although the utilization of space is enormously significant and highly potential to improve the channel capacity of the MIMO systems, how to design the antenna for the space-limited MIMO application with efficiently use the space resources is still needed to be further studied and investigated. Moreover, there is also a requirement for increased functionality within a confined volume which leads to a burden on today's wireless communication systems. Therefore, this project will focus on to design and study the effect of the reconfigurable antenna with polarization diversity in space-limited MIMO system.

1.3 Research Motivations

The topic is very significance as there are a lot of research currently has been done in improving and enhancing the capacity. According to Shannon-Hartley theorem, increase in bandwidth can increase the capacity. However, the disadvantages is bandwidth is very limited resources and costly. Besides that, the degree of modulation can be increased, but, it has the limitation. The use of reconfigurable antenna has been identified capable to increase the SNR, consequently improve the capacity.
The study can give the performance comparison of the MIMO systems when using reconfigurable antenna and non-reconfigurable antenna. The ability of the antenna to reconfigure into various type of polarization modes; LP, LHCP, RHCP and slanted LP, can be exploited to increase the SNR. In addition, the comparison is also made for space-separation MIMO and space-limited MIMO application. By co-locating orthogonal polarization on the similar structure, it could save cost and occupied less space, which make it suitable for space-limited MIMO applications such as portable access points. An investigation and study is carried out to determine the percentage of channel capacity improvement offered by proposed antenna by exploiting polarization diversity feature.

1.4 Research Objectives

The main focus of this research is to study on the effect and impact of deploying PRAs at the receiver end for space limited MIMO application. The impact is calculated in term of percentage of channel capacity improvement offered by the polarization reconfigurable antenna when comparing with non-reconfigurable antenna and space-separation MIMO. In order to accomplish this, the main focus is divided into 3 major objectives:

1) To design and develop a single port polarization reconfigurable antenna.
2) To design and develop a dual port polarization reconfigurable antenna.
3) To conduct the field experiment on channel capacity of 2 x 2 MIMO in an indoor environment.
1.5 Scope of the Research

The scopes began with gathering information, review and study the literature of related topics such as concept of polarization reconfigurable antenna, theory of MIMO system, and technique to achieve reconfigurability feature. It is also including technique of biasing such as type of switches and biasing components. This work aimed the antenna to be operated in WLAN frequency band (2.4-2.5 GHz). The antennas should have the capability to reconfigure the polarization between LP, LHCP and RHCP. The microstrip circular patch antenna is selected to be used as radiator for both single and dual port design to ensure fair comparison between techniques and for easier analysis. Moreover, the size of circular shaped antenna is slightly smaller than rectangular.

Slit perturbation and alteration of the feeding networks techniques are being used to design the single port antenna. It is much easier to achieve circular polarization for single feed antenna through perturbed and modified the antenna physical. Using this method, the switches and biasing network is inserted on the radiating element. Meanwhile, for the alteration of the feeding network, the CPW slotline feeding structure is selected because of easy integration with RF switches and uncomplicated of the biasing circuitry as it is placed on the ground plane. Furthermore, the special characteristic of CPW to accommodate odd and even mode is exploited to establish the second port on the similar structure, thus make it more compact and suitable for space-limited MIMO applications. To achieve the polarization reconfigurability features, PIN diodes are chosen as switches due to the lower in cost and its simplicity in biasing as compared to other type of switches.
The antenna is simulated using Computer Simulation Technology Microwave Studio and the optimization is done by using parametric study. The optimized design is fabricated and measured to validate the antenna. The single and dual port antenna is tested in the experiment of the 2 x 2 MIMO in real indoor environment. The effect of the designed polarization reconfigurable antenna in term of channel capacity is studied and analysed.

1.6 Outline of the Thesis

This thesis presents a progressive study on PRAs in space-limited MIMO applications and their potential advantages. This thesis is structured as follows.

Chapter 1 states the research background, problem statement, research objectives and scope of the research.

Chapter 2 reviews important concepts and theories of the RAs, particularly on PRAs. It touches in details of the technique in designing polarization diversity antenna and technique of biasing. This chapter also introduces the RF components, the selection of type of switches, and the theory of the polarization. Lastly, it explains on the background of the MIMO and the concept of the channel capacity measurement for evaluating performances of the MIMO systems.
Chapter 3 starts off with discussions of the research methodology. This chapter presents the flow of the works and describes the three main stages in order to achieve the research objectives. It explains on the design and simulation. In addition, it also discusses on the fabrication and measurement procedures. Finally, this chapter explains the method of capacity measurement and setup.

Chapter 4 presents on the design of the single port PRAs. Two techniques use are slits perturbation and feeding network modification. It discusses the design approach, switch configurations and design mechanism for both techniques. Method in achieving fixed operating frequency and widening the axial ratio (AR) bandwidth is also presented. The measurement results is comparing with simulation results.

Chapter 5 presents on the design approach, mechanism and configurations of the dual-ports PRAs. Good isolations are achieved by utilizing the odd and even mode of the CPW structure. The simulated and measured are fully documented and presented. The discrepancies are discussed and analysed.

Chapter 6 shows the result of the measurement and capacity analysis. It also explains in details the experimentation setup and scenario. MATLAB software is used for analysis and theoretical capacity evaluation. The hardware implementation is presented. The performance is reported in cumulative distribution function graph.

Finally, Chapter 7 summarizes the thesis with conclusions on all major findings and contributions. It discusses possible improvements and suggestions for future work.
REFERENCES


