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ABSTRACT 

 

 

 

 

In this study, polyacrylamide (PAAm) and poly(N-isopropylacrylamide) 

(PNIPAAm) hydrogels were synthesized via ultraviolet light-emitting diode (UV LED) 

(λ ~ 365 nm) photopolymerization system. UV LED technology has offered better 

alternative than UV mercury (Hg) system for curing technology especially for 

temperature-sensitive polymeric hydrogels as it can be operated without heat 

generation and with fast curing response. The control experiment using commercial 

photoinitiators has shown that UV LED system was suitable to polymerize hydrogels 

provided that; photoinitiator has the overlap emission with UV LED spectra. However, 

most commercial photoinitiators have limited solubility in water. Thus, suitable water 

soluble photoinitiator (WSPI) for UV LED system (i.e. λ → 330-365 nm) was 

prepared in order to synthesize UV LED curable hydrogel in purely water formulation. 

The water soluble photoinitiator was obtained from complexation of 2,2-dimethoxy-2-

phenylacetophenone (DMPA) and methylated-β-cyclodextrin (MβCD). According to 

the results presented in this work, high monomer conversion (> 90 %) was achieved 

with WSPI-initiated hydrogels. The non-responsive and responsive behavior of PAAm 

and PNIPAAm hydrogels towards temperature were demonstrated by swelling and 

rheological measurements. In addition, swelling and rheological methods gave good 

correlation for determination of mesh sizes. From rheological measurements, the 

elastic modulus (G′) was higher than the loss modulus (G″) and both parameters were 

independent to the measured frequency window. It has shown that UV LED cured 

hydrogels possessed ideal rubber characteristic. Tensile properties of the hydrogels 

showed similar trend curve as commercial contact lenses reported in the previous 

study. Clearly, this study has revealed that UV LED system is a good tool to 

synthesize hydrogels by using the excellent choice of photoiniator.  
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ABSTRAK 

 

 

 

 

Dalam kajian ini, hidrogel poliakrilamida (PAAm) dan poli(N-

isopropilakrilamida) (PNIPAAm) telah disintesis melalui sistem fotopempolimeran 

sinaran ultraungu diod pemancar cahaya (UV LED) (λ ~ 365 nm). UV LED teknologi 

telah memberikan alternatif yang lebih baik berbanding sistem sinaran ultraungu 

merkuri (UV Hg) kerana teknologi pempolimerannya lebih cepat dan sistemnya tidak 

menjana haba. Ciri-ciri ini amat sesuai untuk hidrogel polimer yang sensitif terhadap 

haba. Eksperimen kawalan menggunakan foto pemula komersial telah menunjukkan 

bahawa sistem UV LED sesuai untuk pempolimeran hidrogel dengan syarat foto 

pemula tersebut mempunyai pertindihan spektra dengan sistem UV LED. Walau 

bagaimanapun, kebanyakan foto pemula komersial tidak larut dalam air. Oleh itu, foto 

pemula larut air (WSPI) yang sesuai untuk sistem UV LED (iaitu λ → 330-365 nm) 

telah disediakan bagi membolehkan sintesis formulasi hidrogel yang berasaskan air 

menggunakan teknik pempolimeran UV LED. Foto pemula larut air telah diperoleh 

melalui pengkompleksan 2,2-dimetoksi-2-fenilasetofenon (DMPA) dan metil-β-

siklodekstrin (MβCD). Berdasarkan hasil kajian, penukaran monomer yang tinggi (> 

90%) telah diperoleh bagi formulasi hidrogel yang menggunakan WSPI. Sifat tidak 

responsif dan responsif hidrogel PAAm dan PNIPAAm terhadap suhu telah 

dipamerkan melalui darjah pembengkakan dan pengukuran reologi, Di samping itu, 

darjah pembengkakan dan pengukuran reologi ini juga memberi korelasi yang baik 

untuk menentukan saiz jaringan. Melalui pencirian pengukuran reologi hidrogel, 

modulus elastik (G') adalah lebih tinggi daripada modulus kehilangan (G") dengan 

kedua-dua parameter ini tidak bergantungan pada ukuran frekuensi. Ini menunjukkan 

hidrogel yang diperoleh mempunyai ciri getah yang ideal. Sifat tegangan bagi hidrogel 

pula menunjukkan keputusan lengkuk yang sama seperti kajian yang dilaporkan 

sebelum ini. Secara umumnya, kajian ini telah membuktikan bahawa sistem UV LED 

berpotensi tinggi dalam mensintesis hidrogel dengan menggunakan foto pemula yang 

sesuai. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In recent years, the development of polymer based hydrogels has increased 

worldwide. Hydrogels are hydrophilic polymers which built up of three dimensional 

polymeric networks [1]. Nowadays, the development of polymer based hydrogels has 

attracted great attention especially in biomedical applications, such as drug carriers, 

tissue engineering and actuators [2]. This is attributed to the characteristics of 

hydrogels that similar to biological tissue and at the same time compatible with the 

human body [1, 3].  

 

 

Hydrogels have soft consistency and high water content [3] which tend to 

swell and retained water in its structure due to the crosslinking structure with the 

presence of hydrophilic groups [4]. According to their swelling behavior, hydrogels 

can be divided into two categories; i.e., conventional and stimuli responsive 

hydrogels (SRH) [5]. In this study, conventional polyacrylamide (PAAm) hydrogels 

and SRH poly(N-isopropylacrylamide) (PNIPAAm) hydrogels were chosen as both 

hydrogels were derivatives and usually synthesized for UV curing 

photopolymerization. 

 

 

Free radical photopolymerization is one of the conventional methods used to 

polymerize hydrogels. Photopolymerization converts monomer into polymeric 

hydrogels with the help of photoinitiators [6]. Some of the researchers preferably  
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chose photopolymerization due to its several advantages; i.e., it can be created in 

situ, fast curing rates as well as temporal and spatial control over the polymerization 

process [6, 7].  

 

 

Ultraviolet light-emitting diode (UV LED) system is a green technology and 

environmental friendly system. It can offer fast curing rate, reduction in down time 

associated in maintenance and cost effectiveness. UV LED system produced less 

energy than UV mercury (UV Hg) system which cause no temperature builds up and 

very little heat is generated [8]. Up to date, UV LED system has been used for few 

materials, such as adhesives and coating technology [8, 9]. Hence, this light source is 

envisioned to be effective for curing hydrogels as well since UV LED was 

successfully used for coating technology.  

 

 

UV LED system emits monochromatic radiation. Typical UV LED emission 

wavelengths are 365, 385 and 405 nm. Oligo(2-hydroxy-2-methyl-1-[4-(1-

methylvinyl)phenylpropanone) under the trade name Chivacure 300 and 2,2-

dimethoxy-2-phenylacetophenone (DMPA) are examples of commercially available 

photoinitiators. These photoinitiators have only moderate solubility in water.  

 

 

From recent studies, new water soluble photoinitiators can be synthesized by 

several methods; i.e., introduction of hydrophilic groups or attachment of ionic 

groups [10-12]. Self-assembly between monomer and photoinitiator is one of the 

method that have been widely used due to their effectiveness and rapidness in 

producing modified water soluble photoinitiator [11].  

 

 

In this study, PAAm and PNIPAAm hydrogels was prepared using water 

soluble photoinitiator via UV LED photopolymerization. Studies on physical 

properties of hydrogels are also very limited since hydrogels were known to have 

low mechanical strength. Therefore, the efficiency of modified water soluble 

photoinitiator towards the physical and tensile properties of hydrogels was analyzed.  
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1.2 Problem Statement 

 

 

Recently, a considerable amount of research reported on PAAm and 

PNIPAAm hydrogels and most of it proposed the use of UV Hg curing system. 

However, several limitations of using UV Hg system were encountered; for example 

high energy consumption, heat generation and takes longer time to warm up. 

 

 

No study has been reported yet on photopolymerization of hydrogels using 

UV light from LED source. Elimination of the harmful mercury and ozone extraction 

and reduction in down time associated in maintenance are some of the benefits that 

UV LED can offer [8]. Thus, development of UV LED system for hydrogels curing 

is a promising technology to replace UV Hg system.  

 

 

 The success of photopolymerization technology depends on the availability 

and action of appropriate photoinitiators. Successful of photopolymerization process 

does not only depending on the UV systems chosen, but also the efficiency of 

photoinitiator [13]. For such applications, 1-[4-(2-hydroxyethoxy)-phenyl-2-

hydroxy-2-methyl-1-propane-1-one (Irgacure 2959, λ ~ 280 nm) is the most 

commonly used photoinitiator, by virtue of its moderate water solubility. On the 

contrary, this initiator has an absorption wavelength that far below the wavelength of 

UV LED light (λ ~ 365 nm); make it inefficient for UV LED system.  

 

 

For certain applications, water soluble photoinitiator was required to create 

free organic solvents condition. There is no significant published research with 

regard to hydrogels formulation using water soluble photoinitiator via UV LED 

system [12]. Thus, novel water soluble photoinitiator, WSPI with the absorption 

wavelength near 365 nm was produced in order to suit the UV LED system.  

 

 

Water soluble photoinitiator was synthesized by several methods such as self-

assembly, sulfonation process and addition of quaternary group. Self-assembly was 

simple and effective method among these studies [14]. This is because self-assembly 
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method allowed for straightforward complexation to obtain new photoinitiator from 

the commercial photoinitiator with similar performance. 

 

 

In brief, UV LED system is envisioned to be the most effective UV source for 

synthesis and curing of PAAm and PNIPAAm hydrogels. Suitable and efficient 

water soluble photoinitiator was prepared. It is expected that desired final properties 

of resulting hydrogels with high monomer conversion was obtained. Hydrogels with 

high monomer conversion shows a good integration hydrogels and very useful in 

many biomedical applications. 

 

 

 
 

1.3 Objectives of the study 

 

 

This study revolves on the development of PAAm and PNIPAAm hydrogels 

using the UV LED system with. Specifically, the aims are: 

 

 

a) To synthesize and characterize PAAm hydrogels using UV LED system 

based on optimized photopolymerization conditions obtained for UV Hg 

system using commercial photoinitiators. 

 

 

b) To synthesize and characterize WSPI for UV LED curable PAAm and 

PNIPAAm hydrogels system. 

 

 

c) To synthesize and characterize the monomer conversion, swelling, mesh 

sizes, rheological and tensile properties of PAAm and PNIPAAm 

hydrogels using WSPI via UV LED system.  
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1.4 Scope of the study 

 

 

In this study, the first task was to synthesize PAAm and PNIPAAm hydrogels 

from acrylamide (AAm) and N-isopropylacrylamide (NIPAAm) monomers, 

respectively with N,N'-methylenebisacrylamide (MBAAm) as a crosslinker 

monomer. Polymerization of PAAm and PNIPAAm hydrogels were conducted via 

UV LED systems. The conditions for polymerization were adopted from the 

optimized photopolymerization conditions of UV Hg system in the previous study. 

The polymerizations were initiated using three different commercial photoinitiators; 

Irgacure 2959, Chivacure 300 and DMPA.  

 

 

In the second task, WSPI was prepared through complexation of DMPA and 

methylated-β-cyclodextrin (MβCD). WSPI obtained was further tested with fourier 

transform infrared spectroscopy (FTIR), UV-Visible spectroscopy (UV-VIS), nuclear 

magnetic resonance (NMR) and solubility test. 

 

 

PAAm and PNIPAAm hydrogels were prepared using synthesized WSPI via UV 

LED systems. Proper tuning on photopolymerization conditions has to be achieved 

for completion of monomer conversion. This includes UV time and photoinitiator 

concentrations. Various amount of photoinitiators concentration were added to the 

hydrogel formulation, varying from 1-5 wt.% relative to AAm/NIPAAm and UV 

times (2.5 – 20 minutes).  

 

 

The scope of the work also included characterization of physical and structural 

properties of resulting bulk hydrogels. After polymerization, monomer conversion 

was determined. For further hydrogels characterization, swelling measurements in 

pure water as function of temperature were performed. Mechanical properties of 

cured hydrogels were studied by using oscillatory rheometer and texture analyzer. 

Using rheology, photopolymerized bulk PAAm and PNIPAAm hydrogels were 

characterized to determine their viscoelasticity, temperature responsiveness of the 

hydrogels and microstructure. Mesh sizes of the hydrogels were calculated from 

degree of swelling and rheology measurement. 
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