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ABSTRACT

Relaying is a promising technique to improve wireless network performance.

A conventional relay transmits and receives signals in two orthogonal channels due to

half duplex constraint of wireless network. This results in inefficient use of spectral

resources. Two-Path Successive Relaying (TPSR) has been proposed to recover loss

in spectral efficiency. However, the performance of TPSR is degraded by Inter-Relay

Interference (IRI). This thesis investigates the performance of TPSR affected by IRI

and proposes several schemes to improve relaying reliability, throughput and secrecy.

Simulations revealed that the existing TPSR could perform worse than the conventional

Half Duplex Relaying (HDR) scheme. Opportunistic TPSR schemes are proposed to

improve the capacity performance. Several relay pair selection criteria are developed

to ensure the selection of the best performing relay pair. Adaptive schemes which

dynamically switch between TPSR and conventional HDR are proposed to further

improve the performance. Simulation and analytical results show that the proposed

schemes can achieve up to 45% ergodic capacity improvement and lower outage

probability compared to baseline schemes, while achieving the maximum diversity

and multiplexing tradeoff of the multi-input single-output channel. In addition, this

thesis proposes secrecy TPSR schemes to protect secrecy of wireless transmission

from eavesdropper. The use of two relays in the proposed schemes deliver more robust

secrecy transmission while the use of scheduled jamming signals improves secrecy

rate. Simulation and analytical results reveal that the proposed schemes can achieve

up to 62% ergodic secrecy capacity improvement and quadratically lower intercept

and secrecy outage probabilities if compared to existing schemes. Overall, this

thesis demonstrates that the proposed TPSR schemes are able to deliver performance

improvement in terms of throughput, reliability and secrecy in the presence of IRI.
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ABSTRAK

Penggegantian adalah satu teknik yang menjanjikan peningkatan kepada

prestasi rangkaian wayarles. Geganti konvensional menghantar dan menerima

isyarat dalam dua ortogon saluran kerana kekangan separuh dupleks. Ini

menyebabkan penggunaan sumber spektrum yang tidak cekap. Penggegantian

Dwi-Laluan Berturutan (TPSR) telah dikemukakan untuk memulihkan kehilangan

dalam kecekapan spektrum. Walau bagaimanapun, TPSR mengalami kemerosotan

prestasi disebabkan oleh isyarat gangguan antara geganti (IRI). Tesis ini mengkaji

prestasi TPSR yang terjejas oleh IRI dan mencadangkan beberapa skema untuk

meningkatkan kebolehpercayaan, kelajuan dan kerahsiaan. Kajian simulasi

menunjukkan bahawa skema TPSR yang sedia ada menunjukkan prestasi lebih teruk

daripada skema Penggegantian Separuh Dupleks (HDR) konvensional. Skema-skema

TPSR oportunistik dicadangkan untuk meningkatkan prestasi kapasiti dalam senario

IRI. Beberapa kriteria pemilihan pasangan geganti dibangunkan untuk memastikan

pasangan geganti yang dipilih menyampaikan prestasi yang terbaik. Skema-skema

penyesuaian yang dinamik bertukar antara skema TPSR dan skema HDR konvensional

telah dicadangkan untuk meningkatkan lagi prestasi. Keputusan simulasi dan analisis

menunjukkan bahawa skema-skema yang dicadangkan menyampaikan peningkatan

sehingga 45% dalam kapasiti ergodik dan kebarangkalian gangguan yang lebih

rendah berbanding skema-skema yang sedia ada, manakala mencapai kepelbagaian

dan pemultipleksan yang maksimum bagi saluran berbilang-input tunggal-output.

Di samping itu, tesis ini mencadangkan skema-skema TPSR kerahsiaan untuk

melindungi keselamatan penghantaran wayarles. Skema-skema menggunakan dua

geganti dicadangkan dalam tesis ini untuk memastikan penghantaran kerahsiaan yang

lebih mantap manakala penggunaan isyarat penyesakan berjadual dapat meningkatkan

kadar kerahsiaan. Keputusan simulasi dan analisis menunjukkan bahawa skema-

skema kerahsiaan yang dicadangkan boleh mencapai peningkatan sehingga 62% dalam

kapasiti kerahsiaan ergodik serta kebarangkalian memintas dan kerahsiaan gangguan

yang secara kuadratiknya lebih rendah berbanding dengan skema-skema sedia

ada. Secara keseluruhan, tesis ini menunjukkan bahawa skema-skema TPSR yang

dicadangkan mampu mencapai peningkatan prestasi daripada segi kebolehpercayaan,

kelajuan dan kerahsiaan dalam senario kewujudan isyarat gangguan antara geganti.
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CHAPTER 1

INTRODUCTION

This chapter begins with the introduction of this thesis in Section 1.1. Problem
statements are presented in Section 1.2. Section 1.3 and 1.4 describe the objectives and
scopes of this thesis respectively. Finally, the contributions and outlines of this thesis
are highlighted in Section 1.5.

1.1 Introduction

The fifth generation (5G) wireless network will serve as a key enabler in
meeting the ever increasing demand for data rates in future wireless applications. 5G is
envisioned to deliver not only ultra-high data rate, but also ultra-wide radio coverage,
ultra-large number of devices, and ultra-low latency [1]. 5G supports device-to-device
and machine-to-machine communications, which contributes to the development of
Internet of Things (IoT) [2]. In IoT, a large number of devices and machines with
sensors and/or actuators are connected to the internet to form a highly dense network.
In the dense network, a number of idle devices or machines with no message to transmit
or receive can actively assist the network by assuming the role of relays. Relays
offer additional paths for message transmission between the source and destination,
subsequently improve the robustness of the transmission [3].

A transmission assisted by a relay, or more commonly known as cooperative
communication, is introduced to improve the reliability of wireless transmission.
In cooperative communication, relay assists the transmission by offering alternative
independent transmission path between the source and the destination. The
independent path delivers spatial diversity to help the communication system to
overcome shadowing, deep fade and multipath. In cooperative communication, the
requirement for a conventional relay to transmit and receive signals simultaneously in
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the same channel is traditionally assumed to be impractical. It is established that the
power of the intended received signal of the relay is much lower than the power of
the transmitted signal of the relay [4]. When operating simultaneously in the same
channel, the self-transmitted signal saturates the receiver amplifier and analog-to-
digital converter (ADC) and the relay is unable to isolate the intended received signal
from the self-transmitted signal. In order to prevent this issue, the relay receives and
transmits signals in two orthogonal frequency channels or time slots. The requirement
to isolate the transmit and receive operations is generally known as the half-duplex
constraint.

A source has to stop transmission of new message when the relay is
transmitting message to the destination, due to the half-duplex constraint. Otherwise,
the message transmitted by the source during the relay transmission phase will not be
correctly received by the relay. This transmission scheme is also called half-duplex
relaying (HDR). The HDR transmission requires double amount of channel resources
compared to a direct transmission from source to destination without relay. As a
result, the spectral efficiency of HDR is at most half of the spectral efficiency of direct
transmission.

Full-duplex relay has been proposed to improve the bandwidth efficiency. A
typical full-duplex relay is equipped with two antennas and two radio frequency (RF)
chains used to transmit and receive signals respectively. This allows the full-duplex
relay to transmit and receives signals simultaneously in the same channel. However,
this comes at a cost of self-interference at the relay. The transmitted signal at the
transmit antenna interferes the received signal at the receive antenna. Recent literature
shows that the self-interference can be minimised and the residual interference may
be regarded as additive noise [5, 6]. Advanced signal isolation techniques in the
analog, digital, and propagation domains are required by the full-duplex relay to
suppress the self-interference. Such techniques require sophisticated hardware and/or
advanced signal processing which significantly increases the cost and complexity of
relay nodes [7]. This contradicts the original motivation of using relays to provide a
low complexity and inexpensive solution to improve the wireless transmission [8].

Successive relaying protocols are introduced to improve the spectral efficiency
using only conventional half-duplex relays [9–11]. In successive relaying protocols,
multiple half duplex relays are scheduled to assist the source transmission
continuously. One of the popular successive relaying protocols is known as two-path
successive relaying (TPSR) [11]. In TPSR, two conventional relays, Ra and Rb are
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scheduled to assist the transmission from source S to destination D alternately. When
one of the relays is transmitting message to the destination, the other relay goes into
receiving mode to receive the message transmitted from the source. TPSR allows the
source and destination to transmit and receive new messages continuously. As a result,
TPSR can achieve the same spectral efficiency as full-duplex relaying. However, when
operating in co-channel, the transmitted signal from the transmitting relay interfere
the received signal of the receiving relay. This interference is known as inter-relay
interference and it causes the performance bottleneck in TPSR.

On the other hand, owing to the broadcast nature of wireless transmission, the
wireless security remains one of the main concerns in wireless communication. In
wireless communication, a transmitted signal from the source can be readily overheard
by an unauthorised node. The transmitted signal is not secured when the unauthorised
node intercepts the signal. The unauthorised node with the purpose to intercept the
transmission is known as eavesdropper. The presence of eavesdropper poses a serious
challenge to the security of wireless transmission. Traditionally, information security
is addressed at upper layers of the network protocol stack such as application layer,
transport layer and networking layer, based on cryptography methods. The general idea
of cryptography is to protect the message so that unauthorised nodes without a security
key can gain no information of the encrypted message. However, an eavesdropper with
extremely high computational capability is still able to intercept the encrypted message
through an exhaustive key search. Recently, physical layer security is identified as a
promising technique that secure the wireless transmission by exploiting the physical
characteristics of the wireless channel. Relaying approach has also been proposed to
enhance the secrecy of wireless transmission [12–14].

1.2 Problem Statements

This section presents the problem statements of this thesis. The problem
statements are described in the following subsections.

1.2.1 The detrimental effect of inter-relay interference in TPSR

In TPSR scheme, two relays are scheduled to transmit and receive alternately
to imitate the full-duplex relay to deliver continuous source transmission to the
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destination. As a result, TPSR can deliver the same spectral efficiency as the full-
duplex relaying. This motivates the use of TPSR to address the cost and complexity
of full-duplex relay. However, when operating in co-channel, the received signal of
the receiving relay is interfered by the transmitted signal from the transmitting relay.
This inter-relay interference degrades the performance of TPSR. In the early literature,
the inter-relay interference is mitigated by operating the two relays in two orthogonal
frequency channels [15]. However, the use of two orthogonal channels decreases the
spectral efficiency of TPSR to half of the spectral efficiency of full-duplex relaying.
This diverges from the original purpose of TPSR to achieve the spectral efficiency
of full-duplex relaying. In [11], successive interference cancellation (IC) decoding
strategy is proposed to minimise the inter-relay interference. In the IC decoding
strategy, the relays decode the inter-relay interference and subtract it from the received
signal, before proceed to decode the message transmitted from the source. However,
the IC decoding strategy is only effective when the power of inter-relay interference is
much stronger than the power of the intended signal from the source. Existing literature
does not compare the ergodic capacity and outage probability of TPSR against HDR
in various channel and interference conditions [11]. It is therefore a need to compare
the performance of TPSR affected by inter-relay interference with the HDR in terms of
ergodic capacity and outage probability in various channel and interference conditions.
The performance investigation of TPSR is presented in Chapter 4.

1.2.2 The issues of relay selection in TPSR

In TPSR, two relays assist the transmission alternately to imitate the operation
of a full-duplex relay. This enables TPSR to achieve the spectral efficiency of full-
duplex relaying. However, when operating in co-channel, the alternate transmit and
receive operations of the two relays generate interference to each other. The inter-relay
interference is the main contributing factor to the performance bottleneck of TPSR in
terms of ergodic capacity and outage probability. Existing literature employs relay
pair selection techniques to improve the ergodic capacity, outage probability and the
diversity-and-multiplexing tradeoff of TPSR [16, 17]. In [16] and [17], two relays are
selected from N relays in initialisation phase using relay pair selection criteria. The
relay pair selection criteria affect the performance of TPSR.

In [16], two relays are selected individually with different criteria. First, the
relay with the highest max-min capacity of source-to-relay channel and relay-to-
destination channel is selected as the first relay, without considering the inter-relay
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interference. The second relay is selected from a decoding set of relays, D formed
by the remaining relays which can decode the inter-relay interference and perform
IC decoding of the source message. The qualified relays in D with the highest end-
to-end capacity is then selected as the second relay. The individual selection of the
relays reduces the pool of available relay pairs from

(
N
2

)
= N (N − 1) /2 to N − 1.

Consequently, only 2/N of the available relay pairs are considered in the selection
process. As a result, the best relay pair which achieves the highest capacity might not
be considered in the selection process.

In [17], the inter-relay interference is utilised for superposition coding to
provide additional diversity. A relay pair is qualified to perform superposition coding
only when the source message and the inter-relay interference can be decoded by both
relays. From the qualified relays, the relays with the largest and the second largest
instantaneous capacity of the relay-to-destination channels are selected. Due to the
strict requirement, the initialisation phase in [17] requires a total 1+N2+2 log2N bits
of overhead to acquire channel state information (CSI) of the relays and select the relay
pair. In addition, the instantaneous end-to-end capacity is not considered in the relay
selection. Therefore, the selected relay pair might not be the relay pair that achieves
the highest capacity. On the other hand, the strict requirement of superposition coding
may result in no relay pair being selected. As discussed in [17], when there is no
qualified relay pair, the transmission mode falls back to the conventional HDR and a
new relay needs to be selected. This further increases the overhead of the transmission.
The use of capacity-wise suboptimal selection criteria in [16] and [17] motivates the
proposal of new opportunistic TPSR schemes in Chapter 5.

In addition, based on the results in Chapter 4, TPSR does not always
outperform HDR. Under certain channel conditions, HDR achieves higher ergodic
capacity and lower outage probability than TPSR. Adaptive switching between TPSR
and HDR modes has not been considered in the literature. This motivates the proposal
of new adaptive TPSR schemes in Chapter 5.

1.2.3 TPSR in secrecy wireless communication

Relay provides substantial benefits not only in terms of reliability and spectral
efficiency, but also beneficial in enhancing the secrecy of wireless transmission via
physical layer security [12–14]. Physical layer security exploits the characteristics of
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the wireless channel such as channel fading and interference to improve transmission
security. The existing literature on physical layer security mainly focuses on HDR
[18–20]. In secrecy HDR, the relay cannot transmit and receive signal simultaneously
in the same frequency channel due to the half-duplex constraint. This limits the
performance of secrecy HDR. Recently, full-duplex relaying is proposed to improve
transmission security [21]. The secrecy full-duplex relaying achieves higher secrecy
capacity and lower secrecy outage probability than the secrecy HDR. This is because
the full-duplex relay can transmit and receive signal simultaneously in the same
frequency channel. However, this comes at a cost of self-interference because the
reception of the full-duplex relay is interfered by its own transmission. Advanced
signal isolation techniques in the analog, digital, and propagation domains are required
to suppress the self-interference and this significantly increases the cost and complexity
of full-duplex relay [7]. Alternatively, TPSR is proposed to imitate the full-duplex
relaying by scheduling the operation of two conventional half duplex relays [11].
However, the use of TPSR for secrecy communication has not been considered in the
literature and its secrecy performance remains unknown. This motivates the proposal
of secrecy TPSR schemes in Chapter 6 to provide performance improvement in terms
of secrecy ergodic capacity, secrecy outage probability and intercept probability.

1.3 Objectives

The objectives of this thesis are laid out as follows,

1. to investigate the effect of inter-relay interference to the ergodic capacity and
outage probability of TPSR.

2. to propose opportunistic TPSR schemes with relay pair selection to improve the
ergodic capacity and outage probability.

3. to propose secrecy TPSR schemes to improve the ergodic secrecy capacity,
intercept probability and secrecy outage probability.

1.4 Scopes

This thesis considers the single-input and single-output (SISO) communication
scenarios with a source and a destination assisted by two half-duplex relays. This thesis
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only considers a single-hop relaying scenario because a multi-hop relaying scenario
provides a very limited gain in the achievable data rate compared to the single-hop
relaying scenario [22]. The half-duplex relays cannot transmit and receive signal
simultaneously in the same frequency channel due to half duplex constraint. The
relays apply decode-and-forward (DF) strategy to assist the transmission. By using DF
strategy, the relays decode the messages from the source, re-encode and then transmits
to destination. The DF strategy avoids amplified noise in the relayed signal. The
transmit power of the source and relays are fixed to unity. All the nodes are equipped
with single antenna. The receivers of the relays and destination are corrupted by
complex circularly symmetric additive white Gaussian noise in real and imaginary
components with distribution CN (0, σ2). All channels are reciprocal and follow
quasi-static, frequency flat Rayleigh fading distribution. The channels are independent
and identically distributed (i.i.d.), unless stated otherwise. In the secrecy transmission
scenario, an eavesdropper equipped with a single antenna without jamming capability
is considered. Without loss of generality, it is assumed that the direct channel between
source and destination does not exist due to severe shadowing and/or extreme path
loss, as in the existing literature [16, 17, 21].

The performance of the proposed schemes are simulated in MATLAB software
using Monte Carlo technique. Each of the Monte Carlo simulations take 100,000 trials
to ensure the accuracy of the simulation results. The average signal-to-noise ratio
(SNR) is defined as 1/σ2 in the simulations. The performance metrics measured by
the simulations in Chapter 4 and 5 are ergodic capacity and outage probability. In
Chapter 5, tradeoff between target rate and outage probability is evaluated to validate
the diversity-and-multiplexing tradeoff. Meanwhile, the ergodic secrecy capacity,
intercept probability and secrecy outage probability are considered in Chapter 6. The
performance of the proposed schemes also are evaluated analytically using information
theory and statistical tools. During the derivation of the analytical results, the table
of integrals in [23] serves as a reference in solving complex integration problems
and the order statistics in [24] is used to quantify the distribution of the maximum
and minimum values. In Chapter 5, the closed form equations for ergodic capacity,
outage probability and diversity-and-multiplexing tradeoff of the proposed schemes
are derived. Whereas, the analytical equations for intercept probability and secrecy
outage probability of proposed schemes in Chapter 6 are derived.

In this thesis, multiple-input and multiple-output (MIMO) communication
and power allocation are not considered. This thesis evaluates the performance of
the proposed schemes in worst case scenario using Rayleigh fading model, without
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considering the effect of path loss.The transmission for channels with fast fading is
not included in this thesis. The various channel conditions in Chapter 4 and 5 refer
to the various levels of inter-relay interference. For the proposed secrecy transmission
schemes in Chapter 6, the design of wiretap coding is not considered in this thesis.

1.5 Contributions of the Thesis

The original contributions of this thesis can be summarised as follow,

• The ergodic capacity and outage probability of the existing TPSR schemes
affected by inter-relay interference are investigated in various channel and
interference conditions characterised by different interference levels and
compared to HDR in Chapter 4. The results reveal that TPSR does not always
perform better than conventional HDR.

• New relay pair selection criteria based on the instantaneous end-to-end capacity
are proposed in Chapter 5.

• New opportunistic TPSR schemes with relay pair selection are proposed in
Chapter 5. The proposed opportunistic TPSR schemes are compared to existing
opportunistic HDR, opportunistic TPSR schemes and full-duplex relaying
schemes numerically in terms of ergodic capacity and outage probability.
Information-theoretic analytical results on ergodic capacity, outage probability
and diversity-and-multiplexing tradeoff of the proposed opportunistic TPSR
schemes are derived.

• New adaptive opportunistic TPSR schemes are proposed in Chapter 5 to
further improve the ergodic capacity and outage probability in various channel
conditions characterised by different interference levels.

• New secrecy TPSR schemes are proposed in Chapter 6. The proposed secrecy
TPSR schemes are compared to existing secrecy HDR and secrecy full-duplex
relaying schemes numerically in terms of ergodic secrecy capacity, intercept
probability and secrecy outage probability. Information-theoretic analytical
results on intercept probability and secrecy outage probability of the proposed
secrecy TPSR schemes are derived.
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1.6 Outlines of the Thesis

The rest of this thesis is organised as follows. Chapter 2 gives an overview on
the background and covers the literature review of the research topics in this thesis.
Chapter 3 describes the research methodology of this research. Chapter 4 investigates
the performance of TPSR in the presence of inter-relay interference. Chapter 5 presents
the proposed opportunistic TPSR schemes. Chapter 6 describes the proposed secrecy
TPSR schemes. Chapter 7 concludes the thesis and recommends several future work.



REFERENCES

1. N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. Di Renzo,
“Safeguarding 5g wireless communication networks using physical layer
security,” Communications Magazine, IEEE, vol. 53, pp. 20–27, April 2015.

2. P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5g on the horizon: Key challenges
for the radio-access network,” Vehicular Technology Magazine, IEEE, vol. 8,
pp. 47–53, Sept 2013.

3. N. Nomikos, D. Skoutas, and P. Makris, “Relay selection in 5g networks,” in
Wireless Communications and Mobile Computing Conference (IWCMC), 2014

International, pp. 821–826, Aug 2014.

4. D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” SIGCOMM

Comput. Commun. Rev., vol. 43, pp. 375–386, Aug. 2013.

5. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback
self-interference in full-duplex mimo relays,” Signal Processing, IEEE

Transactions on, vol. 59, pp. 5983–5993, Dec 2011.

6. O. Taghizadeh and R. Mathar, “Full-duplex decode-and-forward relaying with
limited self-interference cancellation,” in Smart Antennas (WSA), 2014 18th

International ITG Workshop on, pp. 1–7, March 2014.

7. D. Bliss, T. Hancock, and P. Schniter, “Hardware phenomenological effects
on cochannel full-duplex mimo relay performance,” in Signals, Systems and

Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar

Conference on, pp. 34–39, Nov 2012.

8. R. Khalili and K. Salamatian, “A new relaying scheme for cheap wireless
relay nodes,” in Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks, 2005. WIOPT 2005. Third International Symposium on, pp. 197–
206, April 2005.

9. S. Yang and J.-C. Belfiore, “Towards the optimal amplify-and-forward
cooperative diversity scheme,” Information Theory, IEEE Transactions on,
vol. 53, pp. 3114–3126, Sept 2007.



113

10. R. Tannious and A. Nosratinia, “Spectrally-efficient relay selection with
limited feedback,” Selected Areas in Communications, IEEE Journal on,
vol. 26, pp. 1419–1428, October 2008.

11. B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex
fading relay channels,” Selected Areas in Communications, IEEE Journal on,
vol. 25, pp. 379–389, February 2007.

12. P. Popovski and O. Simeone, “Wireless secrecy in cellular systems with
infrastructure-aided cooperation,” Information Forensics and Security, IEEE

Transactions on, vol. 4, pp. 242–256, June 2009.

13. Y. Zou, X. Wang, and W. Shen, “Physical-layer security with multiuser
scheduling in cognitive radio networks,” CoRR, vol. abs/1311.0404, 2013.

14. Y. Zou, J. Zhu, X. Wang, and V. Leung, “Improving physical-layer security in
wireless communications using diversity techniques,” Network, IEEE, vol. 29,
pp. 42–48, Jan 2015.

15. F. Xue and S. Sandhu, “Cooperation in a half-duplex gaussian diamond relay
channel,” Information Theory, IEEE Transactions on, vol. 53, pp. 3806–3814,
Oct 2007.

16. N. Nomikos and D. Vouyioukas, “A successive opportunistic relaying protocol
with inter-relay interference mitigation,” in Wireless Communications and

Mobile Computing Conference (IWCMC), 2012 8th International, pp. 228–
233, Aug 2012.

17. Y. Hu, K. H. Li, and K. C. Teh, “An efficient successive relaying protocol
for multiple-relay cooperative networks,” Wireless Communications, IEEE

Transactions on, vol. 11, pp. 1892–1899, May 2012.

18. I. Krikidis, J. Thompson, and S. Mclaughlin, “Relay selection for secure
cooperative networks with jamming,” Wireless Communications, IEEE

Transactions on, vol. 8, pp. 5003–5011, October 2009.

19. V. N. Q. Bao, N. Linh-Trung, and M. Debbah, “Relay selection schemes for
dual-hop networks under security constraints with multiple eavesdroppers,”
Wireless Communications, IEEE Transactions on, vol. 12, pp. 6076–6085,
December 2013.

20. S. Yan, M. Peng, W. Wang, L. Dong, and M. Ahmed, “Relay self-selection for
secure cooperative in amplify-and-forward networks,” in Communications and

Networking in China (CHINACOM), 2012 7th International ICST Conference

on, pp. 581–585, Aug 2012.



114

21. G. Chen, Y. Gong, P. Xiao, and J. Chambers, “Physical layer network security
in the full-duplex relay system,” Information Forensics and Security, IEEE

Transactions on, vol. 10, pp. 574–583, March 2015.

22. A. Nordio, V. Forutan, and C.-F. Chiasserini, “Upper bounds to the
performance of cooperative traffic relaying in wireless linear networks,”
Wireless Communications, IEEE Transactions on, vol. 12, pp. 1–9, March
2013.

23. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products.
Elsevier/Academic Press, Amsterdam, seventh ed., 2007.

24. H. A. David, Order Statistics. Wiley, second ed., 1981.

25. D. Tse and P. Viswanath, “Fundamentals of wireless communications,”
Cambridge University Press, 2004.

26. J. N. Laneman, “Cooperative diversity in wireless networks: Algorithms and
architectures,” tech. rep., 2002.

27. R. Nabar, H. Bolcskei, and F. Kneubuhler, “Fading relay channels:
performance limits and space-time signal design,” Selected Areas in

Communications, IEEE Journal on, vol. 22, pp. 1099–1109, Aug 2004.

28. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. part
i. system description,” Communications, IEEE Transactions on, vol. 51,
pp. 1927–1938, Nov 2003.

29. C. Wang, Y. Fan, J. Thompson, and H. Poor, “A comprehensive study
of repetition-coded protocols in multi-user multi-relay networks,” Wireless

Communications, IEEE Transactions on, vol. 8, pp. 4329–4339, August 2009.

30. C. Leow, Z. Ding, and K. Leung, “Linear precoded cooperative transmission
protocol for wireless broadcast channels,” Vehicular Technology, IEEE

Transactions on, vol. 60, pp. 3509–3515, Sept 2011.

31. S. Hong and G. Caire, “Virtual full-duplex relaying with half-duplex relays,”
Information Theory, IEEE Transactions on, vol. 61, pp. 4700–4720, Sept 2015.

32. C. Wang, Y. Fan, I. Krikidis, J. Thompson, and H. Poor, “Superposition-coded
concurrent decode-and-forward relaying,” in Information Theory, 2008. ISIT

2008. IEEE International Symposium on, pp. 2390–2394, July 2008.

33. A. Bletsas, H. Shin, and M. Win, “Cooperative communications with outage-
optimal opportunistic relaying,” Wireless Communications, IEEE Transactions

on, vol. 6, pp. 3450–3460, September 2007.

34. S. Ikki and M. Ahmed, “Performance analysis of cooperative diversity



115

with incremental-best-relay technique over rayleigh fading channels,”
Communications, IEEE Transactions on, vol. 59, pp. 2152–2161, August
2011.

35. K.-S. Hwang, Y. chai Ko, and M.-S. Alouini, “Performance analysis
of incremental opportunistic relaying over identically and non-identically
distributed cooperative paths,” Wireless Communications, IEEE Transactions

on, vol. 8, pp. 1953–1961, April 2009.

36. D. Michalopoulos and G. Karagiannidis, “Performance analysis of single relay
selection in rayleigh fading,” Wireless Communications, IEEE Transactions

on, vol. 7, pp. 3718–3724, October 2008.

37. I. Krikidis, J. Thompson, S. Mclaughlin, and N. Goertz, “Max-min relay
selection for legacy amplify-and-forward systems with interference,” Wireless

Communications, IEEE Transactions on, vol. 8, pp. 3016–3027, June 2009.

38. A. D. Wyner, “The Wire-tap Channel,” Bell Systems Technical Journal, vol. 54,
pp. 1355–1387, Jan. 1975.

39. S. Leung-Yan-Cheong and M. Hellman, “The gaussian wire-tap channel,”
Information Theory, IEEE Transactions on, vol. 24, pp. 451–456, Jul 1978.

40. Y. Liang, H. Poor, and L. Ying, “Wireless broadcast networks: Reliability,
security, and stability,” in Information Theory and Applications Workshop,

2008, pp. 249–255, Jan 2008.

41. J. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in wireless
networks: Efficient protocols and outage behavior,” Information Theory, IEEE

Transactions on, vol. 50, pp. 3062–3080, Dec 2004.

42. L. Lai and H. El Gamal, “The relay-eavesdropper channel: Cooperation for
secrecy,” Information Theory, IEEE Transactions on, vol. 54, pp. 4005–4019,
Sept 2008.

43. V. Aggarwal, L. Sankar, A. Calderbank, and H. Poor, “Secrecy capacity of a
class of orthogonal relay eavesdropper channels,” in Information Theory and

Applications Workshop, 2009, pp. 295–300, Feb 2009.

44. O. Simeone and P. Popovski, “Secure communications via cooperating base
stations,” Communications Letters, IEEE, vol. 12, pp. 188–190, March 2008.

45. P. Popovski and O. Simeone, “Wireless secrecy in cellular systems with
infrastructure-aided cooperation,” Information Forensics and Security, IEEE

Transactions on, vol. 4, pp. 242–256, June 2009.

46. E. Tekin and A. Yener, “The general gaussian multiple-access and two-way



116

wiretap channels: Achievable rates and cooperative jamming,” Information

Theory, IEEE Transactions on, vol. 54, pp. 2735–2751, June 2008.

47. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series

in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

48. L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental tradeoff
in multiple-antenna channels,” Information Theory, IEEE Transactions on,
vol. 49, pp. 1073–1096, May 2003.

49. D. Tse, P. Viswanath, and L. Zheng, “Diversity-multiplexing tradeoff in
multiple-access channels,” Information Theory, IEEE Transactions on, vol. 50,
pp. 1859–1874, Sept 2004.

50. N. Nomikos, D. Vouyioukas, T. Charalambous, I. Krikidis, P. Makris,
D. N. Skoutas, M. Johansson, and C. Skianis, “Joint relay-pair selection for
buffer-aided successive opportunistic relaying,” Transactions on Emerging

Telecommunications Technologies, Nov. 2013.

51. N. Nomikos, T. Charalambous, I. Krikidis, D. Skoutas, D. Vouyioukas,
and M. Johansson, “Buffer-aided successive opportunistic relaying with
inter-relay interference cancellation,” in Personal Indoor and Mobile Radio

Communications (PIMRC), 2013 IEEE 24th International Symposium on,
pp. 1316–1320, Sept 2013.

52. G. Smith, “A direct derivation of a single-antenna reciprocity relation for the
time domain,” Antennas and Propagation, IEEE Transactions on, vol. 52,
pp. 1568–1577, June 2004.

53. B. Sklar, “Rayleigh fading channels in mobile digital communication systems
.i. characterization,” Communications Magazine, IEEE, vol. 35, pp. 90–100,
Jul 1997.

54. R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method

(Wiley Series in Probability and Statistics). 2 ed.

55. A. Goldsmith and A. Nin, “Wireless communications,” Cambridge University
Press, 2005.

56. J. Lee, H. Wang, W. Seo, and D. Hong, “Qos-guaranteed transmission mode
selection for efficient resource utilization in multi-hop cellular networks,”
Wireless Communications, IEEE Transactions on, vol. 7, pp. 3697–3701,
October 2008.

57. Z. Ding, I. Krikidis, B. Rong, J. S. Thompson, C. Wang, and S. Yang,
“On combating the half-duplex constraint in modern cooperative networks:



117

protocols and techniques.,” IEEE Wireless Commun., vol. 19, no. 6, pp. 20–
27, 2012.

58. G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity
theorems for relay networks,” Information Theory, IEEE Transactions on,
vol. 51, pp. 3037–3063, Sept 2005.

59. G. Liu, F. Yu, H. Ji, V. Leung, and X. Li, “In-band full-duplex relaying: A
survey, research issues and challenges,” Communications Surveys Tutorials,

IEEE, vol. 17, pp. 500–524, Secondquarter 2015.

60. N. Nomikos, D. N. Skoutas, D. Vouyioukas, C. Verikoukis, and C. Skianis,
“Capacity maximization through energy-aware multi-mode relaying,” Wirel.

Pers. Commun., vol. 74, pp. 83–99, Jan. 2014.

61. M. Hellman, “An overview of public key cryptography,” Communications

Society Magazine, IEEE, vol. 16, pp. 24–32, November 1978.

62. S. Kartalopoulos, “A primer on cryptography in communications,”
Communications Magazine, IEEE, vol. 44, pp. 146–151, April 2006.

63. Y. Liang, H. Poor, and S. Shamai, “Secure communication over fading
channels,” Information Theory, IEEE Transactions on, vol. 54, pp. 2470–2492,
June 2008.

64. M. Bloch, J. Barros, M. Rodrigues, and S. McLaughlin, “Wireless
information-theoretic security,” Information Theory, IEEE Transactions on,
vol. 54, pp. 2515–2534, June 2008.

65. P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading
channels,” Information Theory, IEEE Transactions on, vol. 54, pp. 4687–4698,
Oct 2008.

66. A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting
over fading channels,” Information Theory, IEEE Transactions on, vol. 54,
pp. 2453–2469, June 2008.

67. C. Shannon, “Communication theory of secrecy systems,” Bell System

Technical Journal, The, vol. 28, pp. 656–715, Oct 1949.

68. H. Deng, H.-M. Wang, W. Guo, and W. Wang, “Secrecy transmission with
a helper: To relay or to jam,” Information Forensics and Security, IEEE

Transactions on, vol. 10, pp. 293–307, Feb 2015.

69. H. Hui, A. Swindlehurst, G. Li, and J. Liang, “Secure relay and jammer
selection for physical layer security,” Signal Processing Letters, IEEE, vol. 22,
pp. 1147–1151, Aug 2015.



118

70. Y. Liu, J. Li, and A. Petropulu, “Destination assisted cooperative jamming for
wireless physical-layer security,” Information Forensics and Security, IEEE

Transactions on, vol. 8, pp. 682–694, April 2013.

71. N. Nomikos, D. Vouyioukas, T. Charalambous, I. Krikidis, D. Skoutas,
and M. Johansson, “Capacity improvement through buffer-aided successive
opportunistic relaying,” in Wireless Communications, Vehicular Technology,

Information Theory and Aerospace Electronic Systems (VITAE), 2013 3rd

International Conference on, pp. 1–5, June 2013.

72. N. Nomikos, D. Vouyioukas, T. Charalambous, I. Krikidis, P. Makris,
D. N. Skoutas, M. Johansson, and C. Skianis, “Joint relay-pair selection for
buffer-aided successive opportunistic relaying,” Transactions on Emerging

Telecommunications Technologies, vol. 25, no. 8, pp. 823–834, 2014.

73. A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic

processes. Boston: McGraw-Hill, 2002.


	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Introduction
	Problem Statements
	The detrimental effect of inter-relay interference in TPSR
	The issues of relay selection in TPSR
	TPSR in secrecy wireless communication

	Objectives
	Scopes
	Contributions of the Thesis
	Outlines of the Thesis

	Literature Review
	Diversity Techniques to Improve Reliability
	Cooperative Communication 
	Successive Relaying 
	Opportunistic Relay Selection
	Wireless Physical Layer Security 
	Improving Physical Layer Security Using Cooperative Nodes
	Capacity of Wireless Channels
	Diversity and Multiplexing Tradeoff
	Related Works

	Research Methodology
	Research Process 
	System Model 
	Channel Model
	Discrete-Time Baseband Model

	Monte Carlo Simulation
	Derivation of Analytical Results

	Performance of Two-Path Successive Relaying In the Presence of Inter-Relay Interference
	Introduction
	System Model
	Two-Path Successive Relaying
	Transmission Protocol
	Instantaneous End-to-End Capacity of TPSR schemes 

	Half-Duplex Relaying 
	Numerical Results
	Chapter Summary

	Opportunistic Two-Path Successive Relaying Schemes In the Presence of Inter-Relay Interference
	Introduction
	System Model 
	Protocol Description 
	Initialisation Phase 
	Relaying Phase
	Instantaneous End-to-End Capacity

	Relay Pair Selection Criteria of the Proposed OSR Schemes
	Proposed OSR Scheme
	Proposed OSR-IC Scheme
	Proposed Adaptive OSR Scheme
	Proposed Adaptive OSR-IC scheme

	Baseline Schemes
	Opportunistic Half-Duplex Relaying
	Full-Duplex Relaying with Self-interference
	Existing OSR 

	Analytical Results
	Ergodic Capacity Analysis
	Outage Probability and the Diversity and Multiplexing Tradeoff Analysis 

	Numerical Results
	Chapter Summary

	Two-Path Successive Relaying Schemes for Secrecy Communication
	Introduction
	System Model
	Proposed Secrecy Two-Path Successive Relaying Scheme 
	Transmission Protocol
	Secrecy Capacity
	Analysis on Intercept Probability 

	Proposed Secrecy Two-Path Successive Relaying With Scheduled Jamming Scheme
	Transmission Protocol
	Secrecy Capacity
	Analysis on Secrecy Outage Probability

	Baselines Schemes
	Secrecy Half-Duplex Relaying Scheme
	Secrecy Full-Duplex Relaying Scheme 
	Secrecy Full-Duplex Jamming Scheme 

	Numerical Results
	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES 



