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ABSTRACT

Ground Penetrating Radar or generally known as GPR is an important and
popular method in subsurface imaging due to its non-destructive nature. GPR data
interpretation requires expertise from human operator which is a time consuming and
costly task as the data amount can be enormously large. In this study, a framework that
pairs up Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM)
is proposed to detect subsurface targets in GPR data automatically. HOG feature
descriptors are extracted by characterizing the target appearance and shape from
hyperbolic signatures that appear in GPR images. Extracted feature descriptors are
then sent to SVM for classification. Contribution of this research includes designing
the best SVM classifier model by considering the best kernel and its optimized
parameter settings. The proposed algorithm is compared to the most commonly used
approach (Hough Transform) to evaluate its performance. In this research, the data sets
consist of images that are collected using different GPR system models. Despite having
limited sample images for training, the proposed method managed to detect hyperbolic
signatures in GPR images. SVM classifier with probabilistic estimation model shows
better performance for its flexibility in decision making using confidence level while
SVM without probabilistic estimation model shows high false positive rate of more
than 50%. Moreover, results from the experiments have also shown that the proposed
method is able to produce higher detection rate with a much lower false positive rate
than that of Hough Transform. The accuracy of target detection using the proposed
method records an average detection rate of 89.40% and 7.38% of false positive rate
for all the data sets used in this research. Apart from the improved performance, the
proposed method also offers flexibility to control detection tasks through an adjustment
on the probabilistic estimation model.
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ABSTRAK

Radar Pengimbas Tanah atau lebih umum dikenali sebagai GPR ialah suatu
peranti yang penting dan popular dalam aplikasi pengimejan di atas permukaan tanah
kerana ia tidak merosakkan tanah. Interpretasi data GPR memerlukan kepakaran
daripada pengendali yang berpengalaman dan ini merupakan suatu tugas yang
memerlukan masa and kos yang tinggi, kerana jumlah data GPR yang dikumpul
boleh menjadi amat besar. Dalam kajian ini, satu rangka kerja yang berasaskan
Histogram Berorientasikan Kecerunan (HOG) dan Mesin Vektor Sokongan (SVM)
dibina bagi tujuan pengesanan dalam data GPR secara automatik. Diskriptor HOG
diekstrak dengan mencirikan hiperbola dalam imej GPR dari segi rupa dan bentuk.
Ciri diskriptor kemudian dihantar kepada SVM untuk pengelasan. Sumbangan kajian
ini termasuk mereka model pengelas SVM dengan menentukan kernel yang terbaik
dan tetapan parameter-parameter yang paling optimum. Bagi tujuan penilaian prestasi,
algoritma yang dicadangkan telah dibandingkan dengan kaedah popular yang biasa
digunakan dalam aplikasi ini, iaitu Jelmaan Hough. Dalam kajian ini, data set
yang diguna merangkumi imej-imej yang dikumpul dari model sistem GPR yang
berbeza. Meskipun imej sampel yang digunakan untuk pelatihan adalah terhad, kaedah
yang dicadangkan berupaya mengesan hiperbola dalam imej-imej GPR. Pengelas
SVM dengan model anggaran kebarangkalian memaparkan prestasi yang lebih baik
kerana kebolehlenturan dalam pengelasan yang berasaskan aras keyakinan, manakala
SVM tanpa model anggaran kebarangkalian menunjukkan kadar positif palsu yang
melebihi 50%. Di samping itu, keputusan eksperimen juga menunjukkan kaedah
yang dicadangkan mencapai ketepatan pengesanan yang lebih tinggi dan kadar positif
palsu yang lebih rendah daripada Jelmaan Hough. Purata ketepatan pengesanan yang
dicatatkan oleh kaedah yang dicadangkan adalah sebanyak 89.40% dengan kadar
positif palsu serendah 7.38% bagi semua set data yang digunakan dalam eksperimen
ini. Selain daripada peningkatan dalam prestasi, kaedah yang dicadangkan juga
menawarkan kebolehlenturan dalam mengawal tugas pengesanan melalui penyelarasan
dalam model anggaran kebarangkalian.
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CHAPTER 1

INTRODUCTION

This chapter covers a brief introduction to Ground Penetrating Radar (GPR)
system in section 1.1 and the rest of the sections are clarifying the framework of doing
this research.

1.1 Background

At the ancient times, a shovel could be the best tool we may find in subsurface
investigation. As the technology evolves, the world has gone so much digitized and
easier with the utilities like electricity, water and gas, telephone and internet services.
Most of these utilities pipes are buried under the ground for safety purposes, space
saving and also better vision of city landscaping.

For that reason, blind excavation is no longer a good option when it comes
to maintain the buried utilities. The work of digging might destruct the structures
of utilities and it makes an extremely exhausting work just for the inspection. Thus,
we need a geophysical method that can gather a great deal of information about the
subsurface and preserving them at the same time. For pipes and cables that are made
from metal, metal detector is commonly used in the early stage of site investigation.
Somehow, the equipment could not perform when it comes to detect non-metallic
utilities. Materials like fiber, plastic or concrete need a better radiolocation equipment
as they are rather fragile and hence the need to be handled with care.

Ground Penetrating Radar (GPR) is one of the most popular geophysical
approach to locate and detect subsurface anomalies. It is also a non-invasive equipment
with the purposes of investigating the location and depth of buried targets. GPR can
be used on different types of medium, including soil, concrete, pavements, fresh water



2

and wood. Using high frequency range (typically from 1 to 1000MHz) [2] of radio
waves, GPR transmits electromagnetic pulses into the ground. When the pulse hits
an interface between materials of different dielectric constants, it will be reflected and
then picked up by the receiver antenna. The larger the difference in the dielectric
properties, the more wave energy will be reflected back to the antenna.

The data collected are in fact pseudo images of the surveyed ground by
recording the two-way travel time of the pulses. Target reflections are in hyperbolic
patterns where the features and properties of the curves can be of use in computing
significant information like depth or dimension of the corresponding target.

The application of GPR covers a number of fields, including earth sciences,
civil engineering, quarrying, archaeology, military and more. However, the focus of
this research work converges on utilities detection only. This is obliging as it allows
proper design, planning and costing at the planning stage of a project and also prevents
delays at the later stage. Other than that, it also reduces the risk of utility damage while
increases the construction productivity at the same time.

Though GPR makes a great tool in site surveying, it still comes with its own
drawbacks. The effectiveness of GPR profiling could be limited by several external
factors like coupling effect of the antennas, depth of buried targets or composition of
the ground. Hence, the image processing techniques that applied on the GPR system
plays an important key to improve the performance of the GPR profiling.

1.2 Problem Statement

There is no doubt that Ground Penetrating Radar (GPR) system has emerged to
be so accommodating in ground surveillance, but it comes with inadequacies as well.
There are so many available GPR devices sold in the market, yet most of them require
experienced operators to handle with the system itself. As GPR data interpretation
requires expertise and experience from human operator, a practical application of the
device would actually cost more in terms of time and money. It can also be a tedious
work when there is an enormous amount of data for interpretation. It is prone to human
error considering there are ambiguous factors that could cause unwanted noise in the
radargrams.
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To determine the burial depth of the interested target, one has to excavate
the investigation site. This might ruin the structure of the buried targets during the
process of excavation. GPR system has indeed provided a very good solution by
profiling the subsurface information into radargrams. However, a resolution is still
needed to automatically estimate the burial depth based on the information given in
the radargrams.

There are quite a few of available software developed individually or tagged
along with the GPR system itself to assist operators to examine the data captured.
Most of them are still lacking since they require users to perform manual mapping or
hyperbola fitting [3] at the final stage to acquire the profiling of buried targets. Hough
Transform is the conventional method used to detect hyperbolas in GPR images [4].
This method requires a fine adjustment on the parameters in order to obtain a desirable
output. Therefore this can be challenging as the size of hyperbolic signatures varies
with the size of the target.

These mentioned issues can be made into one conclusion which infers the
demand for the development of automated target detection in the GPR system. With
the aid of an automated system in subsurface mapping, the site surveying work would
be less troublesome and human operators could be substituted by then. Flexibility in
detecting hyperbolic reflections of various sizes should be offered so that it would be
less hassle in data interpretation. Finally, an estimation on the burial depth is preferred
to help in site investigation.

1.3 Objectives

Geophysical investigation using GPR system covers a wide range of research
work as it is extensively used for numerous purposes in different industries. Since there
is a lot to be studied, the aim of this research is categorized into four main objectives:

1. To detect the target reflections in GPR data automatically using Histogram of
Oriented Gradient (HOG). The main focus of the study is to develop an algorithm
that detects target reflections in GPR images automatically, regardless of which
GPR system that is used to capture the data.

2. To estimate the depth of the buried targets. The designated algorithm should be
able to estimate the burial depth of the interested targets. This is important as
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an accurate information on the targets allows proper design and planning at the
later stage.

3. To compare the performance of HOG with Hough Transform in the application
of detecting target signatures in GPR images automatically. Comparison will
be made among these two techniques with respect to their implementation and
performance.

4. To optimize a Support Vector Machine (SVM) classifier model for hyperbolic
signatures detection in GPR system. Analysis is done towards different
parameters and kernel function of the SVM to obtain the best detection results
in regards to the HOG features.

1.4 Scope / Limitations

The designated algorithm will be implemented using MATLAB throughout this
whole research. The data set to be tested comprises both real and synthetic GPR data,
where the synthetic data is simulated by MATGPR [3] that is written in MATLAB
source code. The idea to have the algorithm tested in both real and simulated data is to
verify its ability to cope with practical application.

In this study, the target detection phase to parameterization of target will be
carried out offline. GPR images to be used are from various GPR system so that the
algorithm can prove its flexibility and dynamicity in dealing with different GPR data
formats.

There are a few limitations of this research and one of them is that the proposed
algorithm could not recognize the material type of the detected target. Considering
that different materials could share the same relative dielectric permittivity (RDP),
therefore it is hard to identify the material type precisely. However, materials of the
utilities could be classified accordingly to their burial depth if a standard worksheet for
utilities installation is provided.

Sources of GPR images that are used in this research could be categorized into
two, namely known source and unknown source. The term of source here indicates the
model of GPR system and its configuration. Since there is an issue of limited source
of GPR images, the images to be trained at the classifier are from Google Image where
its source is unknown.
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1.5 Contributions

The proposed algorithm aims to improve the concept of manual mapping in
site surveying using GPR, which is generally applied in the available present software.
The notion of this research is to have the popular feature descriptor, Histogram of
Oriented Gradient (HOG) integrated into the methodology to perform automated target
detection in GPR Images. A framework that pairs up HOG and Support Vector
Machine (SVM) classifier is designated to solve the fine-tuning difficulties in the
most conventional method in the application. Other than being more flexible in
implementation, the proposed method also has shown better performance at target
detection in the experiment results. Part of the contribution in this research also
covers the work done in designating the best SVM model that would give the optimal
performance of the proposed algorithm. The contribution of the task includes finding
the SVM model with the best kernel function and its best corresponding parameter
settings.

1.6 Thesis Organisation

This thesis consists of six chapters and they are organized such that Chapter
2 discusses previous works that are done on target detection using GPR and how
localization of the interested anomalies was completed. In Chapter 3, the details on
the methodology will be discussed as well as its implementation. The algorithm will
then be tested on the available data sets. Results will be recorded and further discussed
in Chapter 4. Finally, Chapter 5 wraps up the conclusion of the study and its future
work.
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