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ABSTRACT

The question on the number of points of intersectbcurves had been the
subject of conjecture for many years. One of theotbms that arise from such
conjectures is the Bezout's theorem. Bezout giveg@ous proof that when two
polynomials in two variables are set equal to Ouiameously, one of degree and
the other of degreg, then there cannot be more tmansolutions unless the two
polynomials have a common factor. This is a fiostrf of Bezout's theorem. In order
to have a chance of obtaining a full complementrof solutions, there have been
several adjustments to the first form of Bezoutisarem, which allow complex
solutions instead of just real solutions and casréigdy projective plane curves instead
of ordinary plane curves to allow for solutionsitfinity. This condition can be
realized in the example of two lines, which haveomts of intersection on the affine
plane if they are parallel. However, in the prajgeplanes, parallel lines do intersect,
at a point of the line at infinity. This motivatgeneralization of the Bezout’s theorem
in the number of intersection of projective plangves under certain conditions. In
the case of two variables conics in the affine @Jdhe resultant can be applied to solve
the intersection points. The notion and propemiemtersection multiplicity is then
applied on each of the intersection points inclgdire points at infinity by considering
the homogenization variable. By letting the homaggtion variable equals to 1, the
properties of intersection multiplicity can be dpglto determine the multiplicity of
the affine intersection points. By letting the hayanization variable equals to 0, the
intersection multiplicity of the points at infinitgan also be determined, thus the

implementation of the Bezout’s theorem has beestilated using selected examples.



Vii

ABSTRAK

Persoalan kepada bilangan titik persilangan telahjadi subjek konjektur
selama bertahun-tahun. Salah satu teorem yang alidbpleh digunakan untuk
mencari bilangan titik persilangan tersebut iakdrém Bezout. Bezout memberikan
bukti yang kukuh dengan menyatakan bahawa apab#apdlinomial dalam dua
pembolehubah masing-masing berdamahdan n maka tidak boleh wujud lebih
daripadamn penyelesaian titik persilangan kecuali kedua-dalanpmial mempunyai
faktor yang sama. Ini adalah bentuk pertama tedBemout. Dalam usaha untuk
mendapatkan penyelesaian yang lengkap, terdapatradpeb pelarasan yang dapat
memberikan penyelesaian nombor kompleks dan buliagahpenyelesaian nombor
nyata, serta mempertimbangkan lengkung satah umymag merupakan lanjutan
daripada lengkung satah biasa bagi menentukan lesajen pada infiniti. Perkara ini
dapat dijelaskan bagi contoh dua garisan, yang titempunyai titik persilangan pada
satah afin jika kedua-duanya adalah selari. Wadgaimanapun, dalam satah unjuran,
garis selari juga mempunyai titik persilangan tktgaris pada infiniti. Keterangan
tentang sifat ini menjadi motivasi pengaplikasiaarém Bezout dalam menentukan
bilangan persilangan lengkung pada satah unjurdaekilek kepada syarat-syarat
tertentu. Dalam kes persamaan lengkung dua pemibizdehberdarjah dua yang
ditakrifkan dalam satah afin, kaedah resultan bdighinakan untuk menyelesaikan
titik-titik persilangan. Definisi dan sifat-sifat egandaan persilangan kemudian
diaplikasikan pada setiap titik persilangan terrkastik-titik di infiniti dengan
mempertimbangkan pembolehubah homogen. Dengan apiaet pembolehubah
homogen sama dengan 1, sifat-sifat kegandaan guegaih boleh digunakan untuk
menentukan kepelbagaian titik-titik persilangan nafiDengan menetapkan
pembolehubah penyeragaman sama dengan 0, keggmetadangan bagi titik pada
infiniti juga boleh ditentukan. Seterusnya itu peknaan teorem Bezout telah

dterangkan dengan contoh-contoh yang dipilih.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

Mathematicians studying some topics spent tharetifiguring out how to
construct new equations from old. One of the matitemans, Descartes' 1637 in La
Geometrie [1] focused on the theory and constractib equations. For instance, the
paradigm construction of an equation was given endechmus’[1] via the intersection

of a hyperbola and a parabola. In other words, emaéticians have used two degree two

curves to solve a degree three curve {'.& 2).

According to [1], Descartes and Fermat indepergéntind a more general way
of solving any degree three or four equations bgifig the intersection of a parabola
and a circle. Unlike Fermat, Descartes published-ésults in La Geometrie and further
published a particular cubic curve, the Cartesiaralpola, whose intersection with a

suitable circle gave the solution of any giverhfifir sixth degree equation.

In search of a general construction for findintugons tonth degree equations,
the mathematicians of the time assumed that tleesettion of a degreecurve and a
degreem curve consists ofim points. As mentioned by Fulton [1], “it seems tkize
first mathematician to formally state this assumptivas Newton in his 1665 work,



Principia Mathematica: Fge number of points ime" two lines may intersect can never
be greatey"y®rectangle ofy® numbers of their dimensions, and they always istgrs

SO many points, excepting thosé' are imaginary only”. This statement is eventually
known as Bezout's theorem which states that thebruwf points of intersection of two
distinct irreducible algebraic curves equals tredpct of their degrees.

1.2 Motivation

A first form of Bezout’'s theorem is an applicativhich states that iff (x, y) and
g(x,y) are polynomials of respective degreesandn whose locus of common zeros

has more thamn points, therf andg have a nontrivial common factor. This version of

the theorem regarded as pertaining to a pair ofefflane curves.

In affine plane curves, Bezout's theorem holdsyafter certain amendments.
The first of these is the requirement that we abgrsipoints with coordinates in an
algebraically closed field. Even if we consider rgsi with coordinates in an
algebraically closed field and take account of iplitiities of intersections, this fails in
very simple cases, and still needs one further dment. This can already be seen in
the example of two lines, which have no points mteiisection if they are parallel.
However, on the projective plane, parallel linesigi@rsect, in a point of the line at

infinity.

The projective plane curves, which are non-condt@mogenous polynomials
in three variables, two such being regarded asséimee if they are multiples of one
another. IfF andG are two projective plane curves of respective elegn andn over
an algebraically closed field, then either theyénavnontrivial common factor or they

have exactlymn common zeros when the intersection multiplicitedsthe zeros are



taken into account. Versions of the resultant aeddat's Theorem are valid in this
context, and two projective plane curves definesroan algebraically closed field

always have common zeros.

The question on the number of points of intersectiad been the subject of
conjecture for some time earlier, and it was exgzbthat two plane curves of respective
total degreesn andn in some sense haahn points of intersection [1]. Etienne Bezout
(1730-1783) took up this question and dealt withtgaf it rigorously. The quadratic
case can be solved by finding one variable in tesfrthe other by substitution. If each
polynomial is quadratic ity and having coefficients that depend xyrthen we have a

system
a, +a,y+a,y’ =0
b, +by +b,y* =0.

Instead of regarding this as a system of two egusitfor the variables,x, x, ,

wherex, =1,x, =y,X, = y?, we can get two further equations by multiplyingcle
equation byy:
8, +ay+ay’ +ay’ =0

b, +b1y+b2y2 +b3y3 =0

This gives 4 homogeneous linear equationsxforlx, =y, X, = y*,X; = y°.

Since the system has the nonzero solutidny,§?,y®), the determinant of the

coefficient matrix must be 0. Remembering thatdbefficients depend ox we see that
we have eliminated the variabjeand obtained a polynomial equation fowithout
using any solution formula for polynomials in onariable. The device that Bezout
introduced for this purpose is the determinanthef ¢oefficient matrix which is called
the resultant of the system and is a fundamental to handling simultaneous

polynomial equations.



Later in 1779, Bezout gives a rigorous proof thaew two polynomials in two
variables are set equal to O simultaneously, ongegfeem and the other of degree
then there cannot be more thamn solutions unless the two polynomials have a
common factor. This is a first form of Bezout's ¢hem. In order to have a chance of
obtaining a full complement afhn solutions, he made three adjustments which allowed
complex solutions instead of just real solutionsl @onsider projective plane curves
instead of ordinary plane curves to allow for siolug at infinity. This can already be
seen in the example of two lines, which have nagaf intersection on the affine plane
if they are parallel. However, on the projectivar@, parallel lines do intersect, in a
point of the line at infinity [2].

Since the application of Bezout's theorem on thersection of curves in the
affine space has its limitations when only affiodusions are considered, its application
on the intersection of projective plane curve ivestigated. Therefore, in this

dissertation the following research questions do¥essed.

1.3 Resear ch Problem

1) What is an affine space and a projective space?
2) What is the definition of an algebraic plane cuarel can we determine the
affine and projective intersection points of theaeses?

3) How can Bezout's Theorem be applied or implememtedhe intersection of

projective plane curvep?® k(?)



14  Objectivesof the Study

The following objectives are designed to answerrdsearch problem:

1) To explain the notion of affine and projective spaalgebraic plane curves,
affine and projective intersection points of theves.

2) To describe related concepts of Bezout's theorech sas the resultant of
polynomial equations and intersection multiplicity.

3) To illustrate the application or implementation Bézout's theorem on the
intersection of projective curves.

4) To provide examples that explain the definitioredrems or difficult concepts

involved in achieving the understanding of Bezotit®orem.

In objective 4), some of the examples are citesladdition, the detailed working
explained in these example.

1.5 Scopeof the Study

The study investigates the theory of Bezout whaplied to the intersection of
the algebraic curves such as projective cpivé . (t)covers related concepts of

Bezout’'s such as resultant of polynomials and s&etion multiplicity. Some examples
of the applications of Bezout’s theorem are als@igj to enhance the understanding of
related concepts and theorems.



1.6  Significance of the Study

The algebraic equations are the basis of a numibear@as of modern
mathematics.Writing and solving equations is an important paft mathematics.
Algebraic equations can help us to model situatiand solve problems in which
quantities are unknown. The simplest type of algebequation is a linear equation that
has just one variablélgebraic equations contain variables, symbols #tahd for an

unknown quantity.

Variables are often represented with letters, Xike orz. Sometimes a variable
is multiplied by a number. This number is calle@ toefficient of the variable. An
important property of equations is one that st#tas you can add the same quantity to

both sides of an equation and still maintain anvedent equation.

Geometrically the solutions of this research dre intersection points of the
algebraic curves represented by the equations. Tieisresearch area is algebraic
geometry which plays an important role as the thtgal basis to researches related in
solving multivariate polynomial equations involvirgguations with more than one

variable.

This study illustrates how Bezout's theorem canapplied to the problem of
solving algebraic equations. The theorem has tedidurther developments in this field
of research which seeks for better bounds on th@beu of finite solutions to

multivariate polynomial equations such as the BeinsTheorem and BKK bounds.



1.7  Organization of the Study

The organization of the study is divided and arehgccording to the respective
chapters. The first chapter discusses the backdradirthe research, motivation and
research problem. The research problem is addrésgsedtting the research objectives.
The significance of the study and its scope are ialsluded in the first chapter followed

by the organization of the dissertation.

Chapter 2 defines the notion of algebraic planeeuaffine space, projective
space and projective plane curves. The curves aigbd of homogeneous polynomial
are also defined, since Bezout's theorem is ahowes in the projective plane we need

these definitions and properties in order to foatriand prove the theorem.

After detailed explanation of algebraic plane cgraad projective planes curves,
then we can proceed to chapter 3 which gives ale@tdefinition and properties of
resultant of polynomials and intersection multipliof these curves, and illustrate some

examples for a better understanding of relateduseflll concepts.

Chapter 4 discusses the Bezout’s theorem, theitiefirand theorem related are
defined. In this chapter, the resultant of polyrainand intersection multiplicity are
applied to the projective curves in order to fulfile Bezout's theorem. Furthermore, the
applications of the theorem on the intersectioprofective plane curves especially on
the intersection of conics and nonsingular cubicshe projective plane of dimension
two are explained in this chapter. Some examples aso provided to better

comprehend the implementation of the theorem alatieie concepts.

Lastly, chapter 5 presents the summary and caodsisof the study. The

summary of methodology of this study is listedigufe below:
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Figure 1.1. Methodology of dissertation
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