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ABSTRACT 

 
 
 
 

The question on the number of points of intersection of curves had been the 

subject of conjecture for many years. One of the theorems that arise from such 

conjectures is the Bezout’s theorem. Bezout gives a rigorous proof that when two 

polynomials in two variables are set equal to 0 simultaneously, one of degree m and 

the other of degree n, then there cannot be more thanmnsolutions unless the two 

polynomials have a common factor. This is a first form of Bezout’s theorem. In order 

to have a chance of obtaining a full complement of mn solutions, there have been 

several adjustments to the first form of Bezout’s theorem, which allow complex 

solutions instead of just real solutions and considering projective plane curves instead 

of ordinary plane curves to allow for solutions at infinity. This condition can be 

realized in the example of two lines, which have no points of intersection on the affine 

plane if they are parallel. However, in the projective planes, parallel lines do intersect, 

at a point of the line at infinity. This motivates generalization of the Bezout’s theorem 

in the number of intersection of projective plane curves under certain conditions. In 

the case of two variables conics in the affine plane, the resultant can be applied to solve 

the intersection points. The notion and properties of intersection multiplicity is then 

applied on each of the intersection points including the points at infinity by considering 

the homogenization variable. By letting the homogenization variable equals to 1, the 

properties of intersection multiplicity can be applied to determine the multiplicity of 

the affine intersection points. By letting the homogenization variable equals to 0, the 

intersection multiplicity of the points at infinity can also be determined, thus the 

implementation of the Bezout’s theorem has been illustrated using selected examples. 
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ABSTRAK 

 
 
 
 

 

 Persoalan kepada bilangan titik persilangan telah menjadi subjek konjektur 

selama bertahun-tahun. Salah satu teorem yang didapati boleh digunakan untuk 

mencari bilangan titik persilangan tersebut ialah teorem Bezout. Bezout memberikan 

bukti yang kukuh dengan menyatakan bahawa apabila dua polinomial dalam dua 

pembolehubah masing-masing berdarjah m dan n maka tidak boleh wujud lebih 

daripada mn penyelesaian titik persilangan kecuali kedua-dua polinomial mempunyai 

faktor yang sama. Ini adalah bentuk pertama teorem Bezout. Dalam usaha untuk 

mendapatkan penyelesaian yang lengkap, terdapat beberapa pelarasan yang dapat 

memberikan penyelesaian nombor kompleks dan bukan hanya penyelesaian nombor 

nyata, serta mempertimbangkan lengkung satah unjuran yang merupakan lanjutan 

daripada lengkung satah biasa bagi menentukan penyelesaian pada infiniti. Perkara ini 

dapat dijelaskan bagi contoh dua garisan, yang tidak mempunyai titik persilangan pada 

satah afin jika kedua-duanya adalah selari. Walau bagaimanapun, dalam satah unjuran, 

garis selari juga mempunyai titik persilangan di titik garis pada infiniti. Keterangan 

tentang sifat ini menjadi motivasi pengaplikasian teorem Bezout dalam menentukan 

bilangan persilangan lengkung pada satah unjuran tertakluk kepada syarat-syarat 

tertentu. Dalam kes persamaan lengkung dua pembolehubah berdarjah dua  yang 

ditakrifkan dalam satah afin, kaedah resultan boleh digunakan untuk menyelesaikan 

titik-titik persilangan. Definisi dan sifat-sifat kegandaan persilangan kemudian 

diaplikasikan pada setiap titik persilangan termasuk titik-titik di infiniti dengan 

mempertimbangkan pembolehubah homogen. Dengan menetapkan pembolehubah 

homogen sama dengan 1, sifat-sifat kegandaan persilangan boleh digunakan untuk 

menentukan kepelbagaian titik-titik persilangan afin. Dengan menetapkan 

pembolehubah penyeragaman sama dengan 0, kegandaan persilangan bagi titik pada 

infiniti juga boleh ditentukan. Seterusnya itu pelaksanaan teorem Bezout telah 

dterangkan dengan contoh-contoh yang dipilih. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Problem  

 
 

 Mathematicians studying some topics spent their time figuring out how to 

construct new equations from old. One of the mathematicians, Descartes' 1637 in La 

Geometrie [1] focused on the theory and construction of equations. For instance, the 

paradigm construction of an equation was given by Menaechmus’[1] via the intersection 

of a hyperbola and a parabola. In other words, mathematicians have used two degree two 

curves to solve a degree three curve (i.e.23 =x ). 

 
 According to [1], Descartes and Fermat independently found a more general way 

of solving any degree three or four equations by finding the intersection of a parabola 

and a circle. Unlike Fermat, Descartes published his results in La Geometrie and further 

published a particular cubic curve, the Cartesian parabola, whose intersection with a 

suitable circle gave the solution of any given fifth or sixth degree equation. 

 
 In search of a general construction for finding solutions to nth degree equations, 

the mathematicians of the time assumed that the intersection of a degree n curve and a 

degree m curve consists of nm points. As mentioned by Fulton [1], “it seems that the 

first mathematician to formally state this assumption was Newton in his 1665 work, 
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Principia Mathematica: For ye number of points in wch two lines may intersect can never 

be greater ynye rectangle of ye numbers of their dimensions, and they always intersect in 

so many points, excepting those wch are imaginary only’’. This statement is eventually 

known as Bezout's theorem which states that the number of points of intersection of two 

distinct irreducible algebraic curves equals the product of their degrees.  

 

 

 

 

1.2 Motivation 

 
 

A first form of Bezout’s theorem is an application which states that if ),( yxf and 

),( yxg  are polynomials of respective degrees m and n whose locus of common zeros 

has more than mn  points, then f and g have a nontrivial common factor. This version of 

the theorem regarded as pertaining to a pair of affine plane curves. 

 

 In affine plane curves, Bezout’s theorem holds only after certain amendments. 

The first of these is the requirement that we consider points with coordinates in an 

algebraically closed field. Even if we consider points with coordinates in an 

algebraically closed field and take account of multiplicities of intersections, this fails in 

very simple cases, and still needs one further amendment. This can already be seen in 

the example of two lines, which have no points of intersection if they are parallel. 

However, on the projective plane, parallel lines do intersect, in a point of the line at 

infinity.  

 

  The projective plane curves, which are non-constant homogenous polynomials 

in three variables, two such being regarded as the same if they are multiples of one 

another. If F  and G are two projective plane curves of respective degrees m and n over 

an algebraically closed field, then either they have a nontrivial common factor or they 

have exactly mn  common zeros when the intersection multiplicities of the zeros are 
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taken into account. Versions of the resultant and Bezout’s Theorem are valid in this 

context, and two projective plane curves defines over an algebraically closed field 

always have common zeros.  

 

 The question on the number of points of intersection had been the subject of 

conjecture for some time earlier, and it was expected that two plane curves of respective 

total degrees m and n in some sense had mn  points of intersection [1]. Etienne Bezout 

(1730-1783) took up this question and dealt with parts of it rigorously. The quadratic 

case can be solved by finding one variable in terms of the other by substitution. If each 

polynomial is quadratic in y and having coefficients that depend on x, then we have a 

system 

02
210 =++ yayaa  

02
210 =++ ybybb . 

 
 Instead of regarding this as a system of two equations for the variables ,2,1,0 xxx , 

where 2
210 ,,1 yxyxx === , we can get two further equations by multiplying each 

equation by y: 

03
3

2
210 =+++ yayayaa  

03
3

2
210 =+++ ybybybb  

 
 This gives 4 homogeneous linear equations for 3

3
2

210 ,,,1 yxyxyxx ==== . 

Since the system has the nonzero solution ( 32 ,,,1 yyy ), the determinant of the 

coefficient matrix must be 0. Remembering that the coefficients depend on x, we see that 

we have eliminated the variable y and obtained a polynomial equation for x without 

using any solution formula for polynomials in one variable. The device that Bezout 

introduced for this purpose is the determinant of the coefficient matrix which is called 

the resultant of the system and is a fundamental tool in handling simultaneous 

polynomial equations.  
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 Later in 1779, Bezout gives a rigorous proof that when two polynomials in two 

variables are set equal to 0 simultaneously, one of degree m and the other of degree n, 

then there cannot be more than mn  solutions unless the two polynomials have a 

common factor. This is a first form of Bezout’s theorem. In order to have a chance of 

obtaining a full complement of mn  solutions, he made three adjustments which allowed 

complex solutions instead of just real solutions and consider projective plane curves 

instead of ordinary plane curves to allow for solutions at infinity. This can already be 

seen in the example of two lines, which have no points of intersection on the affine plane 

if they are parallel. However, on the projective plane, parallel lines do intersect, in a 

point of the line at infinity [2]. 

 

Since the application of Bezout’s theorem on the intersection of curves in the 

affine space has its limitations when only affine solutions are considered, its application 

on the intersection of projective plane curve is investigated. Therefore, in this 

dissertation the following research questions are addressed. 

 

 

 

 

1.3  Research Problem  

 
 

1) What is an affine space and a projective space? 

2)  What is the definition of an algebraic plane curve and can we determine the 

affine and projective intersection points of these curves? 

3)  How can Bezout’s Theorem be applied or implemented on the intersection of 

projective plane curve )(2 kp ? 
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1.4  Objectives of the Study  

 
 

 The following objectives are designed to answer the research problem: 

  

1) To explain the notion of affine and projective space, algebraic plane curves, 

affine and projective intersection points of the curves. 

2) To describe related concepts of Bezout’s theorem such as the resultant of 

polynomial equations and intersection multiplicity. 

3) To illustrate the application or implementation of Bezout’s theorem on the 

intersection of projective curves. 

4) To provide examples that explain the definition, theorems or difficult concepts 

involved in achieving the understanding of Bezout’s Theorem. 

 

 In objective 4), some of the examples are cited. As addition, the detailed working 

explained in these example. 

 

 

 

 

1.5 Scope of the Study  

 
 
 The study investigates the theory of Bezout when applied to the intersection of 

the algebraic curves such as projective curve )(2 kp . It covers related concepts of 

Bezout’s such as resultant of polynomials and intersection multiplicity. Some examples 

of the applications of Bezout’s theorem are also given, to enhance the understanding of 

related concepts and theorems. 
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1.6 Significance of the Study 

 
 

 The algebraic equations are the basis of a number of areas of modern 

mathematics. Writing and solving equations is an important part of mathematics. 

Algebraic equations can help us to model situations and solve problems in which 

quantities are unknown. The simplest type of algebraic equation is a linear equation that 

has just one variable. Algebraic equations contain variables, symbols that stand for an 

unknown quantity.  

 
 Variables are often represented with letters, like x, y, or z. Sometimes a variable 

is multiplied by a number. This number is called the coefficient of the variable. An 

important property of equations is one that states that you can add the same quantity to 

both sides of an equation and still maintain an equivalent equation.  

 

 Geometrically the solutions of this research are the intersection points of the 

algebraic curves represented by the equations. Thus the research area is algebraic 

geometry which plays an important role as the theoretical basis to researches related in 

solving multivariate polynomial equations involving equations with more than one 

variable. 

 
 This study illustrates how Bezout’s theorem can be applied to the problem of 

solving algebraic equations. The theorem has initiated further developments in this field 

of research which seeks for better bounds on the number of finite solutions to 

multivariate polynomial equations such as the Bernstein Theorem and BKK bounds. 
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1.7 Organization of the Study 

 
 

The organization of the study is divided and arranged according to the respective 

chapters. The first chapter discusses the background of the research, motivation and 

research problem. The research problem is addressed by setting the research objectives. 

The significance of the study and its scope are also included in the first chapter followed 

by the organization of the dissertation. 

 

 Chapter 2 defines the notion of algebraic plane curve, affine space, projective 

space and projective plane curves. The curves and divisor of homogeneous polynomial 

are also defined, since Bezout's theorem is about curves in the projective plane we need 

these definitions and properties in order to formulate and prove the theorem.  

 

After detailed explanation of algebraic plane curves and projective planes curves, 

then we can proceed to chapter 3 which gives a detailed definition and properties of 

resultant of polynomials and intersection multiplicity of these curves, and illustrate some 

examples for a better understanding of related and useful concepts.  

 

Chapter 4 discusses the Bezout’s theorem, the definition and theorem related are 

defined. In this chapter, the resultant of polynomial and intersection multiplicity are 

applied to the projective curves in order to fulfill the Bezout’s theorem. Furthermore, the 

applications of the theorem on the intersection of projective plane curves especially on 

the intersection of conics and nonsingular cubics in the projective plane of dimension 

two are explained in this chapter. Some examples are also provided to better 

comprehend the implementation of the theorem and related concepts. 

 

 Lastly, chapter 5 presents the summary and conclusions of the study. The 

summary of methodology of this study is listed in figure below: 
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                                    Figure 1.1. Methodology of dissertation          
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