NUMERICAL PREDICTION OF LAMINAR NANOFLUID FLOW IN RECTANGULAR MICROCHANNEL

SAIDU BELLO ABUBAKAR

UNIVERSITI TEKNOLOGI MALAYSIA

NUMERICAL PREDICTION OF LAMINAR NANOFLUID FLOW IN RECTANGULAR MICROCHANNEL

SAIDU BELLO ABUBAKAR

A report submitted in partial fulfilment of the requirement for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

Dedicated to my late father

ACKNOWLEDGEMENT

First and foremost praise is to Allah, the Almighty, on whom ultimately we depend for sustenance and guidance. May His blessings and peace be upon His beloved servant prophet Muhammad (SAW), his household, the four rightly guided companions, other companions and the entire Muslims Ummah.

I would like offer my sincerest gratitude to my supervisor, Assoc. Prof. Dr. Nor Azwadi Bin Che Sidik, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I attribute the level of my Master degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. I don't have the right words to use in thanking you for all that you have done to prayers Allah (SWT) to continue to be your guide and your family may He reward you with the best in this worldly life and the hereafter, Ameen.

My sincere thanks also go to my sponsor Kano state government, Nigeria, under the leadership of His Excellency Engr. Dr. Rabiu Musa kwankwaso. I am very grateful for the opportunity given to me.

Last but not the least; I am indebted to my family: my mother and my late father for giving birth to me at the first place and supporting me spiritually throughout my life.

ABSTRACT

Numerical simulation of laminar nanofluid flow in Three-dimensional (3D) straight rectangular microchannel heat sink is carried out. In this study the behavior and effect of using pure water and Fe₃O₄-H₂O as working fluids in the microchannel are examined. Fe₃O₄-H₂O with volume fraction range of 0.4% - 0.8% are used in this simulation to evaluate the cooling performance of microchannel heat sink. Fluent, a Computational Fluid Dynamic (CFD) is used as the solver of simulation. A rectangular microchannel with hydraulic diameter of 86 µm and length of 10mm under the boundary condition of constant heat flux and uniform inlet velocity is set on this analysis. The Results of present work show that using Fe₃O₄-H₂O as coolant resulted in to higher efficiency of heat transfer in microchannel heat sink in comparison to Pure water. However, using Fe₃O₄-H₂O with 0.8% volume fraction provide a high heat transfer enhancement of 30% as compared to 0.4% and 0.6% volume fractions of the same Fe₃O₄-H₂O. Numerical results show that increasing the thermal conductivity of working fluid can enhanced heat transfer. Therefore, it is equally important to note that the presence of nanoparticles could enhance the cooling of MCHS. Meanwhile, higher Nusselt number is found as fluid enters the channel inlet. This could be anticipated as a result of the development of thermal entry region at the channel and the values of Nusselt number tend to stabilize after fully develop region has been achieved.

ABSTRAK

Kajian simulasi berkaitan pengaliran aliran nano (lamina) berdimensi segi empat tepat menerusi penyerap haba saluran mikro dalam Tiga Dimensi (3D) dilakukan. Perubahan dan kesan ketika pengunaan air tulen (suling) dan Fe₃O₄-H₂O (bendalir kerja) di dalam saluran mikro ini akan dikaji.Simulasi ini akan mengkaji pretasi penyejukan penyerap haba saluran mikro dengan mengunakan Fe₃O4-H₂O pada julat yang kecil,iaitu diantara 0.4% - 0.8%. Perisian Fluent, Computational Fluid Dynamic (CFD) akan digunakan untuk menjalankan simulasi ini. Analisis ini akan dilakukan pada saluran mikro segi empat tepat dengan dimensi, 86 µm diameter hidraulik dan 10mm panjang pada keadaan sempadan fluks haba yang berterusan dengan halaju seragam. Hasil daripada kajian terkini berkaitan penyerap haba saluran menunjukan pengunaan Fe₃O₄-H₂O sebagai penyejuk akan memberi kesan kecekapan yang lebih tinggi berbanding air tulen (suling) dari segi pemindahan haba.Walau bagaimanapun, pengunaan Fe₃O₄-H₂O 0.8% pecahan isipadu akan memberi peningkatan pemindahan haba yang tinggi iaitu sebanyak 30% berbanding 0.4% dan 0.6% pada pecahan jumlah yang sama. Keputusan berangka menunjukkan bahawa peningkatan kekonduksian haba bendalir kerja boleh menigkatkan pemindahan haba. Oleh itu, adalah mustahak untuk mengambil kira kehadiran partikel-partikel nano yang boleh meningkatkan penyejukan MCHS. Sementara itu, bilangan Nusselt yang lebih tinggi telah ditemui ketika bendalir mengalir pada saluran masuk terusan. Ini dapat dijangkakan akibat

TABLE OF CONTENTS

СНАРТЕ		ER TITLE	PAGE
		DECLARATION	ii
		DEDICATION	iii
		ACKNOWLEDGMENT	iv
		ABSTRACT	v
		ABSTRAK	vi
		TABLE OF CONTENTS	vii
		LIST OF TABLES	X
		LIST OF FIGURES	xi
		LIST OF ABREVIATIONS	xiii
		LIST OF SYMBOLS	xiv
		LIST OF APPENDICES	xvi
1	INT	RODUCTION	
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Objectives of the Study	3
	1.4	Scope of the Project	3
2	LITERATURE REVIEW		
	2.1	Introduction to Micrrochannel	5
	2.2	Experimental and Numerical Study of Fluid Flow	
		and Heat Transfer in MicroChannels	7
	2.3	Nanofluids	10
		2.3.1 History of nanofluid	11
		2.3.2 Preparation of Nanoparticle and Nanofluids	11

	2.4	Thermal Conductivity of Nanofluids	13	
	2.5	Viscocity of Nanofluids	19	
	2.6	Temperature Effect of Nanofluids	27	
	2.7	Particle Size Effect	28	
	2.8	Heat Capacity of Nanofluid	28	
	2.9	Heat transfer Enahnacement using Nanofluids in		
		Microchannels	29	
3	RES	SEARCH METHODOLOGY		
	3.1	Introduction	32	
	3.2	Physical Model and Assumptions	33	
	3.3	Mathematical Formulations	35	
		3.3.1 Governing Equation	35	
		3.3.2 Boundary Conditions	36	
		3.3.3 Hydraulic Boundary Conditions	37	
		3.3.4 Thermal Boundary Conditions	37	
	3.4	Thermophysical Properties of Nanofluid	38	
	3.5	Important Parameter	39	
	3.6	Geometry Modeling		
	3.7	Computational Fluid Dynamics (CFD) & Fluent		
	3.8	Finite Volume Method	41	
		3.8.1 Gambit Modelling	41	
		3.8.2 Structural Design	42	
		3.8.3 Meshing	43	
	3.9	Fluent	45	
		3.9.1 Fluent Boundary Condition	46	
4	RES	SULTS AND DISCUSSION		
	4.1	Introduction	48	
	4.2	Grid Independent Test	48	
	4.3	Data Validation	49	
	4.4	Numerical Results	51	
		4.4.1 Cross Sectional View of the Simulation Model	51	

	4.4.2 Flow Behavior of the Working Fluids		5	52	
		4.3.2.1	Velocity Contour	5	52
		4.3.2.2	Velocity Profile of the Case Study	5	54
	4.4.3	B Effect of	Temperature Distribution	5	55
	4.4.4	1 Tempera	ture of Microchannel Heat Sink	5	55
	4.4.5	Effect of	Nusselt Number	6	51
5 CONCLUSION					
	5.1 Con	clusion		6	55
	5.2 Reco	ommendatio	n	6	56
	REFERENCES			ϵ	57
	APPENDI	CES		7	72

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Method in producing nanofluids with its advantages	
	and disadvantages	12
2.2	Analytical models on thermal conductivity of	
	Nanofluids	16
2.3	Summary of nanofluid viscosity model proposed by	
	several authors	20
3.1	Dimension of the physical model	34
3.2	Meshing setting	44
3.3	Boundary condition applied for the microchannel heat	
	sink	46
3.4	Boundary condition setting in FLUENT	47
4.1	Grid independent test	49

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Schematic diagram of direct cooling and indirect Cooling	6
3.1	Schematic of unit cell rectangular microchannel	
	Heatsinks	34
3.3	Schematic of a unit cell rectangular microchannel	
	heat sink	40
3.4	Geometry modelling of the computational model	42
3.5	Side view of the computational domain	43
3.6	Side view of the geometry	43
3.7	Geometry of microchannel array	44
3.8	Meshed computational domain	45
4.1	Validation of average nusselt number along	
	Micro channel length	50
4.2	Crossectional view of the simulation model	51
4.3	Velocity contour at the channel outlet for the pure	
	Water	52
4.4	Velocity contour at channel outlet at Fe ₃ O ₄ -H ₂ O	53
4.5	Closed up view of the velocity contour at the	
	channel inlet	54
4.6	Velocity profile at the middle of the channel	55
4.7	Temperature contour at the microchannel with	
	water as working fluid	56
4.8	Temperature contour at the microchannel with	

		xii
	Fe ₃ O ₄ -H ₂ O as working fluid	56
4.9	Temperature contour at the channel oulet	57
4.10	Average temperature distribution versus channel	
	length for Re=140, $\varphi = 0.4$	58
4.11	Average temperature distribution versus channel	
	length for Re=700 , ϕ =0.4	58
4.12	Average tempreture distribution versus channel	
	length for Re=1400, φ =0.4	59
4.13	Average tempreture distribution versus channel	
	length for Re=140, φ =0.6	59
4.14	Average tempreture distribution versus channel	
	length for Re=700, $\varphi = 0.6$	60
4.15	Average tempreture distribution versus channel	
	length for Re=1400, φ =0.6	60
4.16	Nusselt number (Nu) vs channel length(x)	
	at Re=140	62
4.17	Nusselt number(Nu) vs channel length(x)	
	at Re=700	62
4.18	Nusselt Number (Nu) vs channel length(x)	
	at Re=1400	63
4.19	Average nusselt number (Nu) vs reynolds	
	Number (Re)	64

LIST OF ABREVIATIONS

3D Three Dimensional

 Fe_3O_2 - H_2O Ferrofluid H_2O Pure water

CAD Computer Aided Design

CFD Computational Fluid Dynamic

EG Ethylene glycol

EO Engine oil

FVM Finite Volume Method

GAMBIT Geometry and Mesh Building Intelligent Toolkit

IC Integrated Circuit

MCHS Microchannel heat sinks

VEROS vacuum evaporation onto a Running oil substrate

VSLI very large scale integrated

LIST OF SYMBOLS

A Area

C_p Specific heat capacityDh Hydraulic Diameter

h Heat transfer coefficient

H Height of the microchannel heat sink

H_{ch} Height of the channel

 H_{w1} Height from bottom surface H_{w2} Height from the top Surface

L Hydraulic length

K Thermal conductivity

k_{bf} Thermal conductivity of base fluid

k_p Thermal conductivity of solid nanoparticle

k_s Solid thermal conductivity

Nu Nusselt Number

q" Heat Flux

Re Reynolds Number

T Temperature

T_{in} Inlet temperature

V (u,v,w) Velocity

W Microchannel heat sink width

W_{ch} Channel width

 $W_{w1/w2}$ Channel thicknes

Φ Volume fraction of nanoparticles

Greek Symbols

- ρ Density
- μ Kinematic Viscosity
- φ Particle volume fraction

Subscripts

- b_f Base fluid
- f Fluid
- in Inlet
- nf Nanofluid
- s Solid nanoparticle

LIST OF APPENDICES

Frame Wire model	72
Setup for boundary condition	72
Scales residuals	73
Velocity contour inside the channel	73
Temperature contour of the microchannel heat sink	74
Temperature Distribution on microchannel for pure water	74
Temperature Distribution on microchannel for Fe ₃ O ₄ -H ₂ O	75
Covergence history of static temperature on sink top wall	75
Velocity vectors colored by velocity magnitude (m/s)	76
Convergence history of static temperature on sink top wall	76

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The severe need by user for greater IC speeds, functionality and minimization has fuelled an extraordinary acceleration in chip power dissipation. Amongst all the problems facing by the chip and computer designers is none other than more burning than the soaring levels of power flowing through the integrated circuits. Thermal demands are continuously on the rise. Increasing process speeds (up to 2.5 GHz), decreasing product sizes and styling requirements cause higher and higher heat loads on the products and consequently thermal management is becoming a critical bottleneck to system performance. The National Electronic Technology Roadmap, 1997 has acknowledge the expectation that the Moore' law improvements in the semiconductor technology will continue into the second decade of the 21st century [1]. Due to these enhancements, the chip level heat fluxes have gone up tremendously.

The heat dissipated by silicon chips has increased from 10-15 W/cm² in the year 2000 to 100 W/cm² in the year 2006. High heat fluxes of the order of 10²-10³ W/cm² are also found in opto-electronic equipment, high performance super computers, power devices, electric vehicles and advanced military avionics[2]. As now the thermal design power of the last versions of processors for high performance calculation is about 100-130 W/cm².

These significant developments of power of microprocessors and other electronic components by simultaneous reduction of their surface area contribute to critically high the heat flux generation. An increase in the heating density of these components has been a serious problem affecting the performances and reliability of the electrical devices. The advance cooling technology using microchannels were proposed by [3] for cooling very large scale integrated (VLSI) circuitry. The concept of microchannel heat sink applied in cooling system is important due to high-density electronics packaging requires new advancement in thermal management.

Cooling becomes one of the top technical challenges facing high-tech industries. Since conventional methods of cooling such as forced convection air cooling fails to dissipate away the astronomical volumetric heats from the very small surfaces of electronic chips and circuits, new solution need to be present to overcome these matter. The small physical size of electronic equipment and limitations of air cooling systems have caused an increase of interest in high-performance liquid cooling systems. A liquid coolant is pumped through the microchannels of the hea sink so as to extract the heat from the source such as electronic chip on which it I mounted. In most cases, water is used as a coolant. But water is well known as hea transfer fluids which have low thermal conductivity that greatly limits the hea exchange efficiency. Other base fluids like engine oil and ethylene glycol also have low thermal conductivity.

Promising result was obtained if using nanofluids as a coolant. Nanofluids can be used to improve heat transfer and energy efficiency by addition of solid phase into the base fluid. Nanofluids can be considered to be next generation heat transfer fluids as they offer exciting new possibilities to enhance heat transfer compared to pure liquids. Nanofluids are expected to have superior properties compared to conventional heat transfer fluid.

1.2 Problem Statement

The used of nanofluids as a coolant for microchannel heat sink on semiconductor and electrical field is found out more effective and researches on this application are increase from time to time. Before nanofluids was first discovered, most of the researches focus on conventional methods of cooling such as forced convection air-cooling and using fin to dissipate away the excessive heats from the microchannel heat sink. Most of the researches focused on the material properties of microchannel heat sink can enhance the heat transfer. There are a few journals and papers discuss about heat transfer mechanism and research on material properties of the microchannel using Fe₃O₄-H₂O. This study will focus on heat transfer enhancement Using Fe₃O₄-H₂O in Microchannel.

1.3 Objectives of the Study

Before the research is carried out the objectives of the study has to be defined. However the main objectives regarding this simulation study are:

- 1. To study the fluid behaviour along the rectangular microchannel
- 2. To analyse the heat transfer performance in microchannel using Fe_3O_4 H_2O

1.4 Scope of the Project

To achieve the stated Objectives above the scope of this study are liminted to the following:

1. The mode of heat transfer is internal forced convection

- 2. The working fluids in microchannel heat sink consist of pure water and Fe_3O_4 . Using volume fractions 0.4% 8%
- 3. Fluid flow and heat transfer are in steady state.
- 4. Fluid is in single phase and incompressible flows are investigated.
- 5. The microchannel is in constant diameter, constant shape design and constant heat flux applied.
- 6. The study covered laminar flow only.
- 7. The simulation is conducted using FLUENT.

REFERENCES

- 1. Bar-Cohen, Y., et al. *Electroactive polymer (EAP) actuators for planetary applications*. in *1999 Symposium on Smart Structures and Materials*. 1999. International Society for Optics and Photonics.
- 2. Mudawar, I., Assessment of high-heat-flux thermal management schemes. Components and Packaging Technologies, IEEE Transactions on, 2001. 24(2): p. 122-141.
- 3. Tuckerman, D.B., *Heat-transfer microstructures for integrated circuits*. 1984, DTIC Document.
- 4. Choi, S.U. and J. Eastman, *Enhancing thermal conductivity of fluids with nanoparticles*. 1995, Argonne National Lab., IL (United States).
- 5. Parida, P.R., Experimental investigation of heat transfer rate in microchannels. 2007, Faculty of the Louisiana State University and Agricultural & Mechanical College In Partial fulfillment of the Requirements for the degree Master of Science in Mechanical Engineering In The Department of Mechanical Engineering by Pritish Ranjan Parida B. Tech., Indian Institute of Technology.
- 6. Gunnasegaran, P., et al., *Heat transfer enhancement in microchannel heat sink using nanofluids*. Fluid Dynamics, Computational Modeling and Applications, InTech, China, 2012: p. 287-326.
- 7. Kandlikar, S.G. and M.E. Steinke. Examples of microchannel mass transfer processes in biological systems. in ASME 2003 1st International Conference on Microchannels and Minichannels. 2003. American Society of Mechanical Engineers.
- 8. Toh, K., X. Chen, and J. Chai, *Numerical computation of fluid flow and heat transfer in microchannels*. International Journal of Heat and Mass Transfer, 2002. 45(26): p. 5133-5141.

- 9. Peng, X. and G. Peterson, *The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels*. International Journal of Heat and Mass Transfer, 1995. 38(4): p. 755-758.
- 10. Qu, W. and I. Mudawar, *Analysis of three-dimensional heat transfer in micro-channel heat sinks*. International Journal of heat and mass transfer, 2002. 45(19): p. 3973-3985.
- 11. Kawano, K., et al., *Development of micro channel heat exchanging*. JSME International Journal Series B, 2001. 44: p. 592-598.
- 12. Wong, W.H., *Numerical simulation of a microchannel for microelectronic cooling*. Jurnal Teknologi A, 2007(46A): p. 1-16.
- 13. Chein, R. and J. Chuang, *Experimental microchannel heat sink performance studies using nanofluids*. International Journal of Thermal Sciences, 2007. 46(1): p. 57-66.
- 14. Lee, J. and I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer, 2007. 50(3): p. 452-463.
- 15. Mohammed, H., P. Gunnasegaran, and N. Shuaib, *The impact of various nanofluid types on triangular microchannels heat sink cooling performance*. International Communications in Heat and Mass Transfer, 2011. 38(6): p. 767-773.
- 16. Fani, B., A. Abbassi, and M. Kalteh, Effect of nanoparticles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink. International Communications in Heat and Mass Transfer, 2013. 45: p. 155-161.
- 17. Tsai, T.-H. and R. Chein, *Performance analysis of nanofluid-cooled microchannel heat sinks*. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 1013-1026.
- 18. Bhattacharya, P., A. Samanta, and S. Chakraborty, *Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid.* Heat and mass transfer, 2009. 45(10): p. 1323-1333.
- 19. Li, Q., et al., Experimental investigation on flow and convective heat transfer feature of a nanofluid for aerospace thermal management. Yuhang Xuebao/ Journal of Astronautics(China), 2005. 26(4): p. 391-394.

- Zeinali Heris, S., S.G. Etemad, and M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer.
 International Communications in Heat and Mass Transfer, 2006. 33(4): p. 529-535.
- 21. Das, S.K., et al., *Temperature dependence of thermal conductivity enhancement for nanofluids*. Journal of Heat Transfer, 2003. 125(4): p. 567-574.
- 22. Faulkner, D.J., et al. Enhanced heat transfer through the use of nanofluids in forced convection. in ASME 2004 International Mechanical Engineering Congress and Exposition. 2004. American Society of Mechanical Engineers.
- 23. Murugesan, C. and S. Sivan, *Limits for thermal conductivity of nanofluids*. Thermal Science, 2010. 14(1): p. 65-71.
- 24. Wang, X.-Q. and A.S. Mujumdar, *Heat transfer characteristics of nanofluids: a review.* International journal of thermal sciences, 2007. 46(1): p. 1-19.
- 25. Qingzhong, X., Effective-Medium Theory for Two-Phase Random Composites with and Interfacial Shell., 2000. 16(4).
- Wang, X., X. Xu, and S.U. S. Choi, *Thermal conductivity of nanoparticle-fluid mixture*. Journal of thermophysics and heat transfer, 1999. 13(4): p. 474-480.
- 27. Xie, H., et al., *Thermal conductivity enhancement of suspensions containing nanosized alumina particles*. Journal of Applied Physics, 2002. 91(7): p. 4568-4572.
- 28. Xuan, Y. and Q. Li, *Investigation on convective heat transfer and flow features of nanofluids*. Journal of Heat transfer, 2003. 125(1): p. 151-155.
- 29. Lee, S., et al., *Measuring thermal conductivity of fluids containing oxide nanoparticles*. Journal of Heat Transfer, 1999. 121(2): p. 280-289.
- 30. Syam Sundar, L., M.K. Singh, and A. Sousa, *Investigation of thermal* conductivity and viscosity of Magnetic nanofluid for heat transfer applications. International Communications in Heat and Mass Transfer, 2013. 44: p. 7-14.
- 31. Hosseini, M. and S. Ghader, *A model for temperature and particle volume fraction effect on nanofluid viscosity*. Journal of Molecular Liquids, 2010. 153(2-3): p. 139-145.

- 32. J.M. Li, Z.L.L., B.X. Wang, *Experimental viscosity measurements for copper oxide nanoparticle suspensions*. Tsinghua Science technology, 2003. 7: p. 3.
- 33. Wang, X., X. Xu, and S.U.S. Choi, *Thermal conductivity of nanoparticle-fluid mixture*. Journal of thermophysics and heat transfer, 1999. 13(4): p. 474-480.
- 34. Kumar, P.M., J. Kumar, and S. Suresh, *Review on nanofluid theoretical viscosity models*. IJEIR, 2012. 1(2): p. 128-134.
- 35. S.K. Das, N.P., P.Thiesen, W. Roetzel, *Temperature dependence of thermal conductivity enhancement for nanofluids*. ASME Trans.J. Heat transfer, 2003. 25: p. 7.
- 36. Lee, S., et al., *Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles*. Journal of Heat Transfer, 1999. 121(2): p. 280-288.
- 37. Koo, J. and C. Kleinstreuer, *Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids*. International Communications in Heat and Mass Transfer, 2005. 32(9): p. 1111-1118.
- 38. N.Putra, W.R., S.K. Das, *Natural convection of nanofluids*. heat mass transfer, 2003. 39: p. 84.
- 39. Chon, C.H., et al., Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2O 3) thermal conductivity enhancement.

 Applied Physics Letters, 2005. 87(15): p. 1-3.
- 40. Godson, L., et al., Enhancement of heat transfer using nanofluids-An overview. Renewable and Sustainable Energy Reviews, 2010. 14(2): p. 629-641.
- 41. Zhou, S.Q. and R. Ni, Measurement of the specific heat capacity of water-based Al2 O3 nanofluid. Applied Physics Letters, 2008. 92(9).
- 42. Xuan, Y. and Q. Li, *Heat transfer enhancement of nanofluids*. International Journal of heat and fluid flow, 2000. 21(1): p. 58-64.
- 43. Liu, Y., et al., *Training radial basis function networks with particle swarms*, in *Advances in Neural Networks–ISNN 2004*. 2004, Springer. p. 317-322.
- 44. Zeinali Heris, S., M. Nasr Esfahany, and S.G. Etemad, *Experimental investigation of convective heat transfer of Aluminium water nanofluid in circular tube*. International Journal of Heat and Fluid Flow, 2007. 28(2): p. 203-210.

- 45. Chein, R. and G. Huang, *Analysis of microchannel heat sink performance using nanofluids*. Applied Thermal Engineering, 2005. 25(17): p. 3104-3114.
- 46. Ho, C.-J., L. Wei, and Z. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Aluminium water nanofluid. Applied Thermal Engineering, 2010. 30(2): p. 96-103.
- 47. Jang, S.P. and S.U. Choi, *Cooling performance of a microchannel heat sink with nanofluids*. Applied Thermal Engineering, 2006. 26(17): p. 2457-2463.
- 48. Li, J. and C. Kleinstreuer, *Thermal performance of nanofluid flow in microchannels*. International Journal of Heat and Fluid Flow, 2008. 29(4): p. 1221-1232.