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ABSTRACT 

 

 

 

 

Photocatalytic oxidation nowadays has been pledging as the valuable process 

for air and water purification because of its capability to degrade organic pollutants. 

Photodegradation of organic pollutants by suspended photocatalyst have major 

drawbacks in terms of difficulty in post-recovery treatment. In this study, 

polyvinylidene fluoride (PVDF) nanocomposite membrane consisted of electrospun 

titanium dioxide (TiO2) nanofibers (PVDF/e-TiO2) was prepared by hot pressing the 

as-spun TiO2 nanofibers onto PVDF flat sheet membrane. The TiO2 nanofibers acted 

as a photocatalyst, while PVDF membrane acted as a support. The hot press 

technique was carried out by applying heat at 100 °C, 160 °C and 180 °C for 30 

minutes. The nanocomposite membranes were characterized by field emission 

scanning electron microscopy (FESEM), energy dispersive x-ray spectrometry 

(EDX), differential scanning calorimetry and UV-vis-near-infrared spectroscopy. 

The FESEM images and EDX analysis showed good adhesion and dispersion of 

TiO2 nanofibers in the PVDF membrane. Nanocomposite membrane prepared at hot 

pressing temperature of 100 °C (PVDF/e-TiO2-100) exhibited appropriate 

morphological structure and physical properties. PVDF/e-TiO2-100 exhibited the 

highest photocatalytic activity in the degradation of bisphenol A (BPA) under UV 

irradiation compared to the PVDF/e-TiO2-160 and PVDF/e-TiO2-180 with 

degradation rate of 84.53 %, 77.61 % and 62.54 %, respectively. Meanwhile, the 

pure water flux was reduced as the hot press temperature increased; 15.79 L/m
2
.h 

(100 °C), 14.80 L/m
2
.h (160 °C), 8.88 L/m

2
.h (180 °C). However, the BPA rejection 

of the PVDF/e-TiO2-100 was found to be the lowest among the prepared 

nanocomposite membranes. Based on the obtained results, it can be concluded that a 

fine-tuning on the optimization study of the membrane pore size by several 

approaches is required in order to ensure the developed PVDF/e-TiO2 membranes 

can be efficiently functioned by means of photodegradation and filtration 

applications. 
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ABSTRAK 

 

 

 

 

Pengoksidaan fotopemangkinan pada masa kini telah menjadi proses yang 

berharga untuk pembersihan air dan udara disebabkan oleh keupayaannya untuk 

mendegradasi pencemar organik. Fotodegradasi bahan pencemar organik oleh 

ampaian fotomangkin mempunyai kelemahan utama daripada segi kesukaran untuk 

merawatnya selepas digunakan. Dalam kajian ini, membran komposit nano 

polivinilidena florida (PVDF) yang terdiri daripada gentian nano pintalan elektro 

nanogentian titanium dioksida (TiO2) (PVDF/e-TiO2) telah disediakan melalui proses 

tekanan panas gentian nano TiO2 di atas membran kepingan rata PVDF. Gentian 

nano TiO2 bertindak sebagai fotomangkin, manakala membran PVDF bertindak 

sebagai sokongan. Teknik tekanan panas telah dijalankan pada suhu 100 °C, 160 °C 

dan 180 °C selama 30 minit. Membran komposit nano telah dianalisa dengan 

mikroskopi medan pengimbas elektron (FESEM), spektroskopi serakan tenaga sinar 

x (EDX), kalorimeter pengimbasan pembezaan, dan spektroskopi UV-vis inframerah 

terhampir. Imej FESEM dan analisis EDX menunjukkan lekatan dan taburan gentian 

nano TiO2 yang baik dalam membran PVDF. Penyediaan membran komposit nano 

pada suhu 100 °C mempamerkan struktur morfologi dan ciri-ciri fizikal yang 

bersesuaian dengan aplikasi. PVDF/e-TiO2-100 mempamerkan aktiviti 

fotopemangkinan tertinggi dalam degradasi bisfenol A (BPA) di bawah sinaran UV 

berbanding PVDF/e-TiO2-160 dan PVDF/e-TiO2-180. Peratusan degradasi masing-

masing adalah 84.53 %, 77.61 % dan 62.54 %. Fluks air tulen telah berkurangan 

apabila suhu tekanan panas meningkat; 15.79 L/m
2
.h (100 °C), 14.80 L/m

2
.h (160 

°C), 8.88 L/m
2
.h (180 °C). Walau bagaimanapun, PVDF/e-TiO2-100 didapati 

menyingkirkan BPA paling rendah di antara membran komposit nano PVDF/e-TiO2 

yang lain. Berdasarkan keputusan yang diperoleh, dapat disimpulkan bahawa kajian 

pengoptimuman terhadap saiz liang membran dan struktur membran komposit nano 

adalah penting bagi memastikan membran PVDF/e-TiO2 berfungsi dengan cekap 

semasa aplikasi fotodegradasi serta aplikasi pemisahan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Increasing demands and shortage of clean water sources due to the rapid 

development of industrialization, population growth, and long-term drought have 

become a serious issue worldwide. Due to this problem, various practical strategies 

and solutions have been adopted to yield more viable water resources. Wastewater is 

liquid waste discharged by domestic residences, commercial properties, industries, 

and agricultural activities, which often contain some contaminants resulting from the 

mixing of wastewater from different sources (Busca et al., 2008). However, it is 

worth to realize that wastewater also consists of pure water, and therefore numerous 

processes have been implemented to clean up waste water depending on the type and 

extent of contamination (Teh and Mohamed, 2011). Disposal untreated waste water 

or minimal wastewater treatment of household and factories directly into drains and 

rivers has resulted in contaminated raw surface water (Musson and Townsend, 2009). 

Treated wastewater then can be reused as drinking water after it has been cleared 

from contaminants. The treatment of wastewater is not only important for health, but 

also to environment. Without proper treatment, many ecosystems would be severely 

damaged once the treated water is discharged into the environment.  

 

 

Currently, there are several conventional wastewater treatments available in 

order to treat specific wastes such as sewage, industrial and agricultural wastes, and 

radioactive wastewater. There is no treatment technology that applies the same to all 
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pollutants removal. Among those wastewater treatments, membrane technology is 

leading in providing promising and innovation approach in upgrading and expansion 

of wastewater treatment plant (Madaeni et al., 2011). This technology can improve 

the purification of the wastewater, make it more attractive compared to the 

conventional methods (Singh et al., 2008). Membrane technologies are looking 

forward to increase the effectiveness of treating pollutants in wastewater treatment, 

however it also possessed  some limitations related to fouling that will consequently 

reduce the permeate flux and efficiencies of the separation process (Shon et al., 

2007). Photodegradation of pollutants in wastewater via the application of 

photocatalysis is compromising as the best technology in treating micro pollutants 

and to reduce membrane fouling problems. 

 

 

 Wastewater from pharmaceutical industries poses one of the biggest 

challenges to the industrial waste treatment system. A wide variety of products in the 

pharmaceutical manufacturing industries require large amount of chemical 

substances in the manufacturing process. Waste water streams generated from this 

pharmaceutical manufacturing have been heavily contaminated with different type of 

chemicals, toxins and organic contents. Along with very complex contaminants, it 

becomes challenging for the treatment of the wastewater as the regulations for waste 

discharged is very stringent. Endocrine-disrupting compound (EDC) is one of the 

pharmaceutical wastes that require a critical concern for its treatment. For years, 

EDC have been detected in wastewater effluents and raw drinking water sources 

around the world at very low concentrations (Yoon et al., 2007). Since EDC have 

potential risk to humans and wildlife even at the minimal trace levels, removal of 

EDC becomes important in water industry in order to protect the environment and 

eliminate refractory organic. 

 

 

Nowadays, photocatalytic process has shown a great potential as a low-cost, 

and sustainable treatment technology in wastewater industry. The ability of this 

advanced technology has been widely demonstrated to remove persistent organic 

compounds and microorganisms in water. Recently, the main technical barriers that 

impede its commercialization remained on the post-recovery of the catalyst particles 

after the water treatment. To date, the photocatalyst recovery can be achieved by the 
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hybridization of the catalyst onto the support materials. Although the immobilization 

of the photocatalyst on the support materials will reduce the amount of catalyst active 

site, it can reduce the catalyst post-recovery step and at the same time can reduce the 

cost of the process.   

 

 

Over the last decades, a great deal of interest has been focused on the 

photodegradation of organic compounds presence in water and wastewaters with the 

application of Titanium dioxide (TiO2) as the photocatalyst. Generally, TiO2 has 

been considered as one of the best semiconductor photocatalysts available for 

photocatalysis, due to its high photoactivity and photodurability owing to chemical 

and biological inertness, mechanical robustness, flexibility in its surface function, 

high mechanical stability, large surface area to volume ratio towards the light 

irradiation, and low cost (Doh et al., 2008). The vast surface area of nanostructured 

TiO2 photocatalyst allows high in excellent interaction between the pollutants and the 

catalyst, leading to better photocatalytic activity (Herrmann, 1999). Nanoparticles, 

nanotubes, nanowires, nanorods, and nanofibers are several forms of nanostructured 

photocatalysts that were produced for their higher purity, large surface area, and 

great size uniformity. These fascinating properties have an ability to reduce the 

toxicity of the pollutants to a safer level at reasonable cost (Colmenares et al., 2009). 

 

 

Photodegradation of organic pollutants by suspended photocatalyst has a 

major drawback in terms of difficulty to separate very small particles of the 

photocatalyst which requires another post-recovery treatment. To overcome this 

difficulty, the immobilizations of photocatalyst in/on a support/host have been 

introduced. Nowadays, membrane support has been widely used for photocatalyst in 

photocatalytic process. However, the incorporation of the photocatalyst in/onto the 

polymeric membrane support results in a loss of photoactivity, attributed by the 

reduced active surface accessible for components of the solution. It is believed that, 

the immobilization of the photocatalyst in/on the membrane support can be improved 

by introducing nanomaterials. In addition, the optimization study of the membrane 

microstructures and characteristics by several approaches is necessary to develop 

photocatalytic membranes with enhanced photocatalytic properties. 
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1.2 Problem Statement 

 

 

 Disposal untreated waste water or minimal wastewater treatment of 

household and factories directly to drains and rivers has resulted in contaminated raw 

surface water. With the deterioration in water quality, the use of clean water for daily 

use such as cooking, washing clothes, cleaning the dirt, to drink and so on is 

impaired. There are many contaminants or a pollutant that can caused disease that is 

depends on the type of pollutants that present in the wastewater itself. High pressure-

driven membranes such as nanofiltration (NF) or reverse osmosis (RO) might be a 

powerful option to deal with such micro-pollutants (Kimura et al., 2004). However, 

lack of information on their performance is apparent. Among various types of 

organic micro-pollutants with low molecular weight, endocrine disrupting 

compounds (EDCs) have been received a considerable attention recently. With rapid 

development of analytical techniques, it has been reported even at very low 

concentration,  EDC effluents have become a major source of pollutant that polluted 

many aquatic environments. Pollution of drinking water sources with organic micro-

pollutants is one of the great concerns in such situations. Their concentrations in the 

raw water were affected by the percentage of treated wastewater. One of EDCs that 

available abundantly in wastewater is bisphenol A (BPA). For instance,  BPA is an 

important raw material in the production of polycarbonate plastics and epoxy resins, 

which high volume of this chemical waste produced daily could severely affect the 

aquatic ecosystem, as well as human.  

 

 

To overcome this problem, the use of membrane filtration processes has been 

widely utilized over the past decade in order to remove the unwanted micro- and 

macro- particles. For example, unwanted particles that attached the outer layer of 

membrane thus forming a cake layer became the main obstacle in membrane 

filtration efficiency as it affected the productivity (Leong et al., 2014). This 

phenomenon has practically and economically retarded membrane applications in 

water treatment development. The reduction in productivity caused by membrane 

fouling can be interpreted as the declined in flux with time of operation due to the 

increased of hydraulic resistance. It also can be defined that  extra energy supply is 

needed by the membrane filtration system in order to maintain the system 
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performance. Moreover, the cleaning processes have been introduced to the system 

to remove the cake layer from the outer layer of membrane so that it can produce the 

permeate volume as much as at earlier stages. 

 

 

At the moment, photocatalytic oxidation has been pledging as the valuable 

process for air and water purification because of its capability to produce harmless 

products by degrading the organic pollutants without the involvement of chemicals 

(Huang et al., 2007; Litter, 1999). This advanced oxidation process (AOPs) has a 

variety of reactions such as organic synthesis, water splitting, photo reduction, 

hydrogen transfer, gaseous pollutant removal, and others (Gaya and Abdullah, 2008; 

Herrmann, 1999). The photocatalytic process has a great deal of interest in 

photodegradation of organic compounds present in wastewater with incorporation of 

titanium dioxide (TiO2) as a photocatalyst. 

 

 

Over the past decades, nanomaterials show a wide ranging potential in 

various major areas including industrial, biomedical and electronic applications. It 

has attracted the attention of many people especially researcher to further research 

and to improve the characteristics of the nanomaterials. Nanomaterial such as 

nanoparticles (Fischer et al., 2015), nanowires (Zhang et al., 2015), nanofibers 

(Vahtrus et al., 2015), and nanotubes (Arruda et al., 2015) only have size ranging 

from 1-100 nm. Commonly, nanomaterial is used as a catalyst in order to improve 

the process efficiencies because of the small particles will lead to a greater surface 

area for the reaction between pollutants and catalyst (Shen et al., 2014). Due to its 

high active surface area, nanomaterial can be used to reduce the toxicity of pollutants 

to safer level at very reasonable cost (Kriklavova and Lederer, 2011). Nanofibers 

membrane is one of the advanced technologies used because of its small pore size 

and large surface area to volume ratio. It also has a good flexibility of its surface 

function and high mechanical performance such as tensile strength (Huang et al., 

2003; Lev et al., 2011). The excellent features of nanofibers lead to many important 

technology development applications. 

 

 

There are several techniques have been used to produce nanofibers such as 

melt blowing, forcespinning, and electrospinning. For example, heated air blows 
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were used to produce nanofibers in melt blown process while in forcespinning, the 

centrifugal forces has been used to turn the material into nanofibers (Ellison et al., 

2007; Padron et al., 2013). Apart from that, electrospinning is the simplest available 

method used to produce fibers with diameters ranging between 10nm to 10 µm by 

accelerating a jet of charged precursor solution in an electric field (Nor et al., 2013; 

Vonch et al., 2007). 

 

 

The suspended TiO2 photocatalysts have higher photocatalytic efficiencies 

because the overall active surface of the TiO2 particles are in contact with the organic 

pollutants in water/air and directly absorbed more UV light. However, this kind of 

process requires another post-treatment in order to separate the catalyst which are the 

discharge of the catalyst with effluent might be harmful to the ecosystem due to its 

biological accumulative effect (Grieken et al., 2009). To overcome these problems, 

the immobilized TiO2 catalyst on the support material has been introduced. 

Compared to the suspended applications, the immobilized TiO2 photocatalyst on the 

support requires only one-step process. This kind of configuration exhibits a major 

drawback such as low photocatalytic activity due to the less active surface area  of 

the attachment of the TiO2 catalyst on the support (Gao and Liu, 2005).  

 

 

There are several methods can be used to immobilize the TiO2 photocatalyst 

on the membrane support (Chong et al., 2010). Dip coating or spinnng, blending, hot 

pressing, and physical or chemical cross-linking are some of the methods 

incorporating hybrid membrane (Bonchio et al., 2006; Mohamed et al., 2015a; Okur 

et al., 2013; Romanos et al., 2013). In several studies, hot pressing methods were 

done by applying both pressure and heat to improve the connectivity between fiber 

and membrane intersection (Lu et al., 2002; Yuliwati et al., 2011). Membrane 

compactness, mechanical properties and chemical stabilities of membrane will be 

improved by applying the concurrent application of pressure and heat (Na et al., 

2009). The losses strands of the nanofibers that are present on the top of the surface 

would also be eliminated as reported by Na et al. (2009) who studied the effect of hot 

press treatment on the electrospun PVDF membrane. 
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The current conventional methods used for wastewater treatment incapable 

for treating micropollutants such as EDCs and this might due to the compounds 

complexity and persistence. There is no such technology approach or treatment 

method that applies the same to all EDCs removal. Due to its high surface area, 

nanofibers have been used in this technique as it  can enhance the filtration 

efficiency. Therefore, the current research was conducted to explore the possibility 

and effectiveness of EDCs removal in wastewater by using nanofiber coating on the 

membrane for membrane separation and photodegradation applications. 

 

 

 

 

1.3 Objective of Study 

 

 

The aim of this study is to investigate the removal efficiency of Bisphenol A 

(BPA) via photocatalytic process using the developed hybrid membrane made of 

PVDF-based membrane coated with TiO2 nanofibers. The specific objectives of this 

study are: 

 

 

1) To study the effect of TiO2 precursor solution concentrations on the physical 

properties of TiO2 nanofibers 

 

2) To study the effects of hot pressing temperature on morphological structure 

of TiO2 nanofibers coated onto PVDF membrane 

 

3) To investigate the photocatalytic performances and membrane separation 

properties of flat sheet PVDF/e-spun TiO2 nanocomposite membrane towards 

BPA removals  
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1.4 Scope of Study 

 

 

In order to achieve the above mentioned objectives, the following scopes are 

outlined: 

 

 

1) Preparing TiO2 precursor solution by varying the concentration of (0.5g, 1.0g 

and 1.5g) polyvinylpyrrolidone, PVP in 1.6mL of titanium tetraisopropoxide 

(TTIP) under electrospinning process. 

 

2) Analysing the morphological structure and the diameter of the resultant TiO2 

nanofibers using scanning electron microscope (SEM). 

 

3) Preparing the polyvinylidene fluoride (PVDF) flat sheet membrane using 

phase inversion technique as a nanocomposite membrane support. 

 

4) Developing the coating process of PVDF membrane with as-spun TiO2 

nanofibers using hot press method at temperature of 100°C, 160°C and 

180°C for 30 minutes. 

 

5) Characterizing the PVDF/e-spun TiO2 nanofibers in terms of morphological 

structures and structural properties towards photocatalytic process by using 

field electron scanning electron microscope (FESEM), energy dispersive X-

ray analysis (EDX), thermal properties by differential scanning calorimetry 

(DSC) and optical absorption behaviour by ultraviolet-visible-near-infrared 

spectrophotometry (UV-VIS-NIR). 

 

6) Investigating the photocatalytic performance of the prepared PVDF/e-spun 

TiO2 nanofibers for the photodegradation of BPA by using high performance 

liquid chromatography (HPLC) coupled with a programmable UV detector. 
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7) Examining the performance of the PVDF/e-spun TiO2 nanofibers toward 

membrane separation through the membrane physical characteristics in terms 

of membrane hydrophilicity, pure water flux, membrane porosity, membrane 

mean pore size, and membrane rejection. 

 

 

 

 

1.5 Significance of Study 

 

 

In recent years, membrane based photocatalytic technology was nominated as 

an Advanced Oxidation Process (AOP) owing to its promising ability to degrade 

trace level environmental pollutants via hybrid technology approach such as 

photodegradation and membrane separation. The utilization of TiO2 nanofibers as the 

photocatalyst was found to be interesting due to the flexibility in its surface function, 

high mechanical stability, and very large surface area to volume ratio towards the 

light irradiation. These properties are significantly meaningful for a maximum light 

absorption and simultaneously improved the photocatalytic activity. Furthermore, the 

immobilization of TiO2 nanofibers on the PVDF membrane support can simplify the 

conventional photocatalytic process by eliminating the post treatment of catalyst 

separation process. The significant improvement in this study, indicated that the 

photocatalytic membrane is vital to sustain a clean and safer environment.
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