Universiti Teknologi Malaysia Institutional Repository

Using ridge least median squares to estimate the parameter by solving multicollinearity and outliers problems

Pati, Kafi Dano and Adnan, Robiah and Rasheed, Bello Abdulkadir (2015) Using ridge least median squares to estimate the parameter by solving multicollinearity and outliers problems. Modern Applied Science, 9 (2). pp. 191-198. ISSN 1913-1852

Full text not available from this repository.

Official URL: https://www.ccsenet.org/journal/index.php/mas/arti...

Abstract

In the multiple linear regression analysis, the ridge regression estimator is often used to address the problem of multicollinearity. Besides multicollinearity, outliers also constitute a problem in the multiple linear regression analysis. We propose a new biased estimators of the robust ridge regression called the Ridge Least Median Squares (RLMS) estimator in the presence of multicollinearity and outliers. For this purpose, a simulation study is conducted in order to see the difference between the proposed method and the existing methods in terms of their effectiveness measured by the mean square error. In our simulation studies the performance of the proposed method RLMS is examined for different number of observations and the different percentage of outliers. The results of different illustrative cases are presented. This paper also provides the results of the RLMS on a real-life data set. The results show that RLMS is better than the existing methods of Ordinary Least Squares (OLS), Ridge Least Absolute Value (RLAV) and Ridge Regression (RR) in the presence of multicollinearity and outliers.

Item Type:Article
Uncontrolled Keywords:multicollinearity, ridge regression, outliers, robust estimation, robust ridge methods
Subjects:Q Science > QA Mathematics
Divisions:Science
ID Code:60514
Deposited By: Haliza Zainal
Deposited On:24 Jan 2017 02:54
Last Modified:19 Aug 2021 03:37

Repository Staff Only: item control page