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This article studies the unsteady MHD free flow of a Casson fluid past an oscillating vertical plate with
constant wall temperature. The fluid is electrically conducting and passing through a porous medium.
This phenomenon is modelled in the form of partial differential equations with initial and boundary
conditions. Some suitable non-dimensional variables are introduced. The corresponding non-
dimensional equations with conditions are solved using the Laplace transform technique. Exact solu-
tions for velocity and energy are obtained. They are expressed in simple forms in terms of exponential
and complementary error functions of Gauss. It is found that they satisfy governing equations and
corresponding conditions, and are reduced to similar solutions for Newtonian fluids as a special case.
Expressions for skin-friction and Nusselt number are also evaluated. Computations are carried out and
the results are analysed for emerging flow parameters.

© 2015 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

Exact solutions

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of magnetohydrodynamic (MHD) flow of non-
Newtonian fluid in a porous medium has attracted the attentions
of many researchers. Of course, it is due to the fact that such phe-
nomenons are mostly found in the optimization of solidification
processes of metals and metal alloys, the geothermal sources
investigation and nuclear fuel debris treatment. However, non-
Newtonian fluids are subtle compare to Newtonian fluids. Indeed,
the resulting equations of non-Newtonian fluids give highly
nonlinear differential equations which are usually difficult to solve.
These equations add further complexities when MHD flows in a
porous space have been taken into account. Ample applications for
the MHD flows of non-Newtonian fluids in a porous medium are
encountered in irrigation problems, heat-storage beds, biological
systems, process of petroleum, textile, paper and polymer com-
posite industries. Numerous studies have been presented on
various aspects of MHD flows of non-Newtonian fluid flows passing
through a porous medium. One may refer to some recent in-
vestigations [1-5].
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On the other hand, convection flow arises in many physical
situations such as in the cooling of nuclear reactors and in the study
of environmental heat transfer processes amongst others. Con-
vection is of three types namely free, mixed and force. Amongst
them free convection is important in many engineering applica-
tions including an example of automatic control systems consist of
electrical and electronic components, regularly subjected to peri-
odic heating and cooled by free convection process. Some recent
studies containing the free convection phenomenon can be found
in [6—10] and the references therein. Besides that the work on free
convection for non-Newtonian fluids when exact solutions are
needed is limited. Further, when MHD and porosity effects are
added to the governing equations then even such solutions are
scarce. Farhad et al. [11] obtained closed form solutions for un-
steady free convection flow of a second grade fluid over an oscil-
lating vertical plate. Khan et al. [12] developed exact solutions for
unsteady free convection flow of Walters'-B fluid. Samiulhaq et al.
[13] analysed unsteady MHD free convection flow of a second grade
fluid in a porous medium with ramped wall temperature.

In nature, some non-Newtonian fluids behave like elastic solid
that is, no flow occur with small shear stress. Casson fluid is one of
such fluids. This fluid has distinct features and is quite famous
recently. Casson fluid model was introduced by Casson in 1959 for
the prediction of the flow behaviour of pigment-oil suspensions
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[14]. So, for the flow, the shear stress magnitude of Casson fluid
needs to exceed the yield shear stress, otherwise the fluid behaves
as arigid body. This type of fluids can be marked as a purely viscous
fluid with high viscosity [15]. Casson model is based on a structure
model of the interactive behavior of solid and liquid phases of a two-
phase suspension. Some famous examples of Casson fluid include
jelly, tomato sauce, honey, soup and concentrated fruit juices. Hu-
man blood can also be treated as Casson fluid due to the presence of
several substances such as protein, fibrinogen, globulin in aqueous
base plasma and human red blood cells [16,17].

In the earlier studies on Casson fluid, Boyd et al. [18] discussed
the steady and oscillatory flow of blood by taking into account
Casson fluid whereas Fredrickson [19] investigated its steady flow
in a tube. The peristaltic flow of a Casson fluid in a two-dimensional
channel is described by Mernone et al. [20]. Mustafa et al. [21]
studied the unsteady boundary layer flow and heat transfer of a
Casson fluid over a moving flat plate with a parallel free stream
using homotopy analysis method (HAM). Mixed convection stag-
nation-point flow of Casson fluid with convective boundary con-
ditions is examined by Hayat et al. [22]. Shaw et al. [23] discussed
the effect of non-Newtonian characteristics of blood on magnetic
targeting in the impermeable micro-vessel. Magnetic targeting in
the impermeable microvessel with two-phase fluid model-Non-
Newtonian characteristic of blood carried out by Shaw and Mur-
thy [24]. Pulsatile Casson fluid flow through a stenosed bifurcated
artery also studied by Shaw et al. [25]. The effects of thermal ra-
diation on Casson fluid flow and heat transfer over an unsteady
stretching surface subjected to suction/blowing has been devel-
oped by Mukhopadhyay [26]. Bhattacharyya [27] constructed the
boundary layer stagnation-point flow of Casson fluid and heat
transfer towards a shrinking/stretching sheet. Mukhopadhyay et al.
[28] also analysed the Casson fluid flow over an unsteady stretching
surface followed by Pramanik [29] where he studied the Casson
fluid flow and heat transfer past an exponentially porous stretching
surface in the presence of thermal radiation.

In all of the above studies the solutions of Casson fluid are either
obtained by using approximate method or by any numerical
scheme. There are very few cases in which the exact analytical
solutions of Casson fluid are obtained. These solutions are even rare
when Casson fluid in free convection flow with constant wall
temperature is considered. On the other hand, the flow of Casson
fluids (such as drilling muds, clay coatings and other suspensions,
certain oils and greases, polymer melts, blood and many emul-
sions), in the presence of heat transfer is an important research area
due to its relevance in the optimized processing of chocolate, toffee,
and other foodstuffs [21,30—32].

The purpose of the present investigation is two-fold. Firstly, it
incorporates the effects of magnetic field by considering the fluid to
be electrically conducting. Secondly, the fluid is considered in a
porous medium. More exactly, the present work concentres on
unsteady MHD free convection flow of a Casson fluid over a vertical
plate embedded in a porous medium. Exact solutions when the plate
performs sine and cosine oscillations with constant wall tempera-
ture are obtained by using the Laplace transform technique [33—36].
Analytical and numerical results for skin-friction and Nusselt
number are provided. Graphical results are presented and discussed
for various physical parameters entering into the problem.

2. Formulation of the problem

We consider Casson fluid over an infinite vertical flat plate
embedded in a saturated porous medium. The flow being confined
toy > 0, where y is the coordinate measured in the normal direction
to the plate. The fluid is assumed to be electrically conducting with
a uniform magnetic field B of strength By, applied in a direction

perpendicular to the plate. The magnetic Reynolds number is
assumed to be small enough to neglect the effects of applied
magnetic field. Initially, for time t = 0, both the fluid and the plate
are at rest with uniform temperature. At time t = 0" the plate
begins to oscillate in its plane (y = 0) according to

V = UH(t)cos(wt)i; or V = U sin(wt)i; t>0, (1)

where the constant U is the amplitude of the plate oscillations, H(t)
is the unit step function, i is the unit vector in the vertical flow
direction and w is the frequency of oscillation of the plate. At the
same time, the plate temperature is raised to T,, which is thereafter
maintained constant.

The rheological equation of state for the Cauchy stress tensor of
Casson fluid is written as, (see [22,26,27,28,32])

T=T0+m7",

or

Py
Z(MB +\/T_Tr)eu, > T

2(#8 +%)eij, <7
where 7 = e;; e and e;; is the (i, j)™" component of the deformation
rate, = is the product of the component of deformation rate with
itself, =, is a critical value of this product based on the non-
Newtonian model, up is plastic dynamic viscosity of the non-
Newtonian fluid and py is yield stress of fluid. Before we derive the
governing equations, the following assumptions are made, rigid
plate, incompressible flow, unsteady flow, unidirectional flow, one
dimensional flow, non-Newtonian flow, free convection, oscillating
vertical plate and viscous dissipation term in the energy equation is
neglected. Under these conditions we get the following set of
partial differential equations

Tij =

)

ou 1\ 8%u e
—=ug(1+—-)—=—0cBdu—"—"= T—Ts), 2
Pt ,“B( +7) o2~ “Bou k]u+pgﬁ( ) (2)
oT | 0°T
PCpE = k6y—27 (3)

together with initial and boundary conditions

t<0:u=0,T =T, forally>0,
t > 0:u=UH(t)cos(wt) or u = U sin(wt),T = Ty aty =0,
u—0,T—>T, asy— oo,

4)
where u,t,T, ug,v,p,8,8,Cp,k,0,¢, and k; are the velocity of the
fluid in x— direction, time, temperature, plastic dynamic viscosity,
Casson parameter, the constant density, the gravitational acceler-
ation, volumetric coefficient of thermal expansion, specific heat at
constant pressure and thermal conductivity, electric conductivity of
the fluid, porosity and permeability of the fluid, respectively.

We introduce the following dimensionless variables

« U U? T-Te +« wv « T

* u *

u —an —;y,t —Tt,ﬁ—m,w —ﬁﬂ' _p?’
_ _ (5)
into Equations. (2)—(4), and we get (* symbols are dropped for
simplicity)

ou No2u o 1.

&_<1+Y)ay—27M u fku + Gré, (6)
00 %0

r&:ay—zv (7)

with associated initial and boundary conditions
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t<0:u=0,6=0forally>0,
t>0:u=H(t)cos(wt) oru = sin(wt),fd =1aty =0, (8)
u—0,0—0asy— oo,

y [Pr
H(y,t)_erfc<§ T)’ (11)

He(y, ) = Pg-ior {ey\/"(“"’)erfc (% /o m) N T g (g N m)]

T

+az—b (<t—%\/%>eymeffC(%ﬁ)—x/E)—i—((H——
_ab <t+l)r2y2>erfc<§\/—v> yVPr e ‘“]'

- %t)em [ey\/‘m erfc (% \/% — /(L + iw)t) + enValiilerfc @ \/% +/(L+ iw)t)]

(12)

o))

The subscript “c” on the left side of Equation (12) stands for the
cosine oscillations of the plate. Similarly, the velocity correspond-
ing to the sine oscillations of the plate is given by

Us(y,£) = wt{ ymerfc( \ﬁf\/ lw)t) + eyVal-iv erfC( \/ + /(L —iw) ﬂ

1 i — L+iw y ja : L+iw y Jja .
+Ee' t[e y\/‘merfc<2\/; \/(L+z<u)t> + eyValLti )erfc<2\/;+ \/(L+1w)t>

+az—b ((t—%ﬁ)eﬁ/ﬂerﬁ(g\/%> —x/E) + <<t+—
—ab

2 T
(t + ﬂ) erfc (X \ /E> — y\/Pr\/EepAtyrz] ,
2 2Vt T

where
_KCp ao oBE 1 ve? vgB(Tw — Teo)

Pr= kK T pU2’ K Ky UZ’G U3 and y
_ 271"(‘
77Py )

here Pr is the Prandtl number, M is the magnetic parameter called
Hartmann number, K is the dimensionless permeability parameter,
Gr is the Grashof number and v is the Casson parameter.

3. Exact solutions

In order to find exact solutions of the system of Equations.
(6)—(8), we use the Laplace transform technique. Thus by taking the
Laplace transforms of Equations. (6) and (7), using initial and
boundary conditions (8), we get the following solutions in the
transformed (y, q) plane

(y,q) = %e*y VP, (9)
e yVag+l) + fy\/ (g+L)

uy,q) = q2+w —*y\/ﬁ. (10)

The inverse Laplace transforms of Equatlons. (9) and (10) are
obtained as follows:

(13)

(i) ]

where
Y p= _Gr
1+ Pr—1
Note that the above solutions for velocity are only valid for
Pr=1. Moreover, the solution for Pr = 1 can be easily obtained by
putting Pr = 1 into Equation (7), and follow a similar procedure as

discussed above. The obtained solutions for cosine and sine oscil-
lations of the plate when Pr = 1 are

Ue(y,t) = @ef"“‘ {ey Val=iv) erfe <§ \/% —/(L- iwﬁ)
+eVVal-iv)erfe (%\/ng \/m>
+ @ei‘”t {ey Valiio)erfe <)2/ \/g - \/m>
+eyMerfc<%\/g+ \/m>

R )
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Ug (y’ t) :%efio)t |:eY\/a(Li<11)erfC <% \/% _ /(L _ l&))t) + ey\/a(Lfim)erfC (% \/g + /(L _ lw)t):|
+ %e"‘”t {e‘yV a(l+iv) erfe (% \/g —/(L+ iw)t) + eV Valtio)opfe (% \/g +4/(L+ iw)t)}

aGry \/?_y_z (y)
_ 24/ —e @ — fcl—=—=)|.
5 { e yerczﬂ

Note that in Equations. (12) and (13), the first two terms in each
equation account the contribution from mechanical parts while the
last two terms show the thermal effects. On the other hand in
Equations. (14) and (15), the last term in each equation shows the
contribution from the thermal part.

4.1. Solutions for large values of v

By taking y— o into Equations. (12) and (13), the correspond-
ing solutions for viscous fluid can be obtained as a special case:

uc(y,t) :@e’i“’[ {eymerfc (52/ \/% - m) + eV -iwerfe <J2l \/% + m)}

+ @e"‘”t {eyv (L+io) erfe <32/ \/% —/(L+ iw)t) + eV o) erfe <32’ \/% +1/(L+ iw)t)}

+g <<t—%\/%>eyﬁerfc<%\/g> —\/E) + ((H—i
—-b (t-i-PrT}/Z)erfc(% \/l—%}) —y\/ﬁ\/%e’% ,

3.1. Nusselt number and skin-friction

Expressions for Nusselt number and skin-friction are calculated
from Equations. (11) and (12) using the relations

v oT* Pr
T —To) &y o Vot (1e)
ou
T=—u(1l+

Nu =

; @ y:O7
2| - e*LfH\@ + abv/Prv/t — abe*“\/%t +ab %t)]

NG
- ab[\/% + 2Valt] erf(VLr)

— e WH{ Ja(L — iw) erf(y/t(L — iw)

+ e2itw a(L + iw) erf(m)}].

(17)

4. Special cases

In order to underline the theoretical value of the general solu-
tions (12) and (13) for velocity, as well as to gain physical insight of
the flow regime, we consider some special cases whose technical
relevance is well known in the literature.

(18)
vl )
uw@_.mkww%m@ﬂ?<“Wﬂ
+ey\/merfc<%\/%+ (L—iw)fﬂ
it | gyv/ Tl e (¥ /1 i
+z2" (e erfc S\t m
+ YV Ltiw) erfe <§ \/% +4/(L+ iw)tﬂ
3 (e pe)ern(3h) - va)
(ol o)
2 pry?
() ]
(19)

4.2. Solutions for stokes first problem

By taking « = 0, which corresponds to impulsive motion of the
plate, then Equations. (12) and (13), yield
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Ue(y, £) :%H {e—yﬁlerfc (32—’\/?— \/E> +erValerfe (%f% m)]
el 9
(3ol )

respectively, (20)

us(y,t) :%H {ey‘/ﬂerfc ()2/ \/%f \/E> teValerfe ()2/ \/%4’ \/IE) ]
(i)
+ < (H—%\/%) e Walerfc <§\/§) + \/E) ]
—ab l(t+PrTy) erfc(%@) —yVPr ﬁ\e/; ] .

+

(21)

4.3. Absence of MHD and porosity effects: attend

The temperature distribution is not effected by MHD and porous
medium, as it results from Equation (11). However, MHD and
porosity have strong influence on velocity as it can be seen from the
mechanical parts of Equations. (12) and (13). Thus in the absence of

4.4. Solution in the absence of mechanical effects

Let us now assume that the infinite plate is kept at rest all the
time. In this case, the wall velocity of the fluid is zero for each real
value of t and thus the mechanical component of velocity identi-
cally vanishes. Consequently, the velocity of the fluid u(y, t) reduces
to the thermal component of Equation (13). Its temperature as well
as the surface heat transfer rate are given by the same equalities
(11) and (16).

4.5. Solution in the absence of mechanical effects

In the last case, we assume that the flow is induced only due to
bounding plate and the corresponding buoyancy forces are zero
equivalently it shows the absence of free convection (Gr = 0) due
to the differences in temperature gradient. This shows that the
thermal parts of velocities in Equations (12) and (13) are zero.

Hence the flow is only governed by the corresponding mechanical
parts given by

uc( 7 t) :@eiiwt |:ey\/m6rfc (')2/ \/g — m)

+ ey\/Werfc(X \/g + \/mﬂ
e yValtio)orfe (— \[ m)
+ ey\/‘WerfC (z \/% + \/m)] )

H(t) iwt
+ T@

MHD (M =0) and porous medium (1/K = 0), these equalities (24)

become

ue(y, t) =@e4wf {ey\/merfc (g \/g -/(- m)t) L VA e (g \/g + mﬂ
+azb ((t——\/_)e YWerfc( \/§> - x/E> + <(t+%\/ﬁ)ewaerf6(% %) +\/E>} -
—ab (t+PrTy2)erfc<%\/:> —yVPr e 4r],

e T

g [ e (3 - ) Ve (. i
+a7b ((t——\/_>€ yferfC( \[) «/E> + <(t+%x/a)e‘y“aerf6<%\/%) +«/E> >
o (7Y )erfc(g ﬁ) NS
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T et (O
1 enVal-iv)erfe (% \/% + \/m>]
e YValtiolerfe <)2/ \/g - W>
n eyx/Merfc@ \/g + m)] .

(25)

Note that Equations (24) and (25) when v — oo, are identical to
those obtained by Fetecau et al. [31], see Equations (8) and (9). This
fact is also shown in Fig. 10.

1
_¢ wt
+4l

5. Results and discussion

In this section, the obtained exact solutions are studied
numerically in order to determine the effects of several involved
parameters such as Prandtl number Pr, Grashof number Gr, Casson
parameter vy, magnetic parameter M, permeability of porous me-
dium K, phase angle wt and time t. Numerical values of skin-friction
and Nusselt number are computed and presented in tables for
different parameters. Physical sketch of the problem is shown in
Fig. 1. Fig. 2 exhibits the velocity profiles for different values of
Prandtl number Pr, when the other parameters are fixed. It is
observed that velocity of the fluid decreases with increasing
Prandtl number. Fig. 3 illustrates the profiles of velocity for different
values of Gr. It is observed that velocity increases with increasing
values of Gr. The flow is accelerated due to the enhancement in the
buoyancy forces corresponding to the increasing values of Grashof
number, i.e., free convection effects. The influence of Casson fluid
parameter on velocity profiles is shown in Fig. 4. It is found that
velocity decreases with increasing values of v. It is important to
note that an increase in Casson parameter makes the velocity
boundary layer thickness shorter. It is further observed from this
graph that when the Casson paramter v is large enough i.e. y — oo,
the non-Newtonian behaviours disappear and the fluid purely

Thermal ~ Momentum
& boundary boundary
layer layer
1
. 0
—_— K []
By 0! u>0T—>T, asy—>oo
—p % [ O
> @ I
D ' l
B 5 0/ O .
— 3 ' gravity
§/ 0 1] 0
— § ’I O
= 0o
— E, ,, O
: ? // 0 () <«——— Porous Medium
/
—_ =

0 o

B4

Fig. 1. Physical sketch of the problem.

T T T

u(y,t)

0.5] Pr=0.15,0.3,0.5,0.7 ]

0() 1 2 3 4
Yy
Fig. 2. Profiles of velocity for different values of Pr, when

M=05K=020=n/4t=0.2andGr=3.

Gr=0,2,5,10

u(y,f)

0.5~

1 2 3 4
y
Fig. 3. Profiles of wvelocity for different values of Gr, when

Pr=03,y=06,M=05K=02, t=03and v = 7/4.

behaves like a Newtonian fluid. Thus, the velocity boundary layer
thickness for Casson fluid is larger than the Newtonian fluid. It
occurs because of plasticity of Casson fluid. When Casson param-
eter decreases the plasticity of the fluid increases, which causes the

u(y,f)

0.5 y=02,0.3,05,2

Fig. 4. Profiles of velocity for different
Pr=03,G6r=0M=02K=2,t=03andw=n/4.

values of vy, when
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u(y,t)

Fig. 5. Profiles of velocity for different
Gr=3, Pr=03,M=05K=02,t=1andy=05.

values of wt, when

u(y.t)

0 1 2 3 4

y

Fig. 6. Profiles of velocity for different
Pr=03,6r=3,vy=05K=02t=03and w = /4.

values of M, when

increment in velocity boundary layer thickness. The graphical re-
sults for the phase angle wt, are shown in Fig. 5. It is observed that
the fluid is oscillating between —1 and 1. These fluctuations near
the plate are maximum and decrease for further values of

u(y:)

0.5 K=10.02,0.2,0,4,0.8

0
0

y

Fig. 7 Profiles of velocity for different values of K
Gr=3,y=05M=05t=03and v = /4.

when Pr=0.3,

u(y,1)

0s 1=02,04,0.6,0.8

Fig. 8. Profiles of velocity for different
Pr=03,6r=0,y=05M=05K=1andw=0.

values of t, when

0.8

0.6 -
= Pr=0.7,1,3,7
&
0.4 -
0.2 -
0 1
0 1 2 3 4
y

Fig. 9. Profiles of temperature for different values of Pr, when t = 0.4.

independent variable y. This figure can easily help us to check the
accuracy of our results. For illustration of such results we have
concentrated more on the values of wt = 0, 7/2 and =. We can see
that for these values of wt, the velocity shows its value either 1,

1 T T T
0.8 1
. 0.6 1
= t=0.1,0.2,0.3,04
)
s
0.4 1
0.2 1
0 I
0 1.25 2.5 3.75 5

y

Fig. 10. Profiles of temperature for different values of t, when Pr = 0.71.
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Table 1

Skin-friction variations.
Pr Gr % wt M K t T
0.3 3 0.5 /4 0.5 0.2 0.3 1.02992
0.71 3 0.5 /4 0.5 0.2 03 1.29166
03 5 0.5 /4 0.5 0.2 03 0.856995
0.3 3 1.0 /4 0.5 0.2 0.3 0.93952
03 3 0.5 /2 0.5 0.2 03 1.05009
03 3 0.5 /4 1.0 0.2 03 1.08472
0.3 3 0.5 /4 0.5 1.0 03 0.670207
0.3 3 0.5 /4 0.5 0.2 0.5 0.692367

0 or —1 which are identical with the imposed boundary conditions
of velocity in Equation (9). Hence, both the graphical and mathe-
matical results are found in excellent agreement.

Fig. 6 displays the effect of magnetic parameter M on the ve-
locity profiles. It is observed that the amplitude of the velocity as
well as the boundary layer thickness decreases when M is
increased. Physically, it may also be expected due to the fact that
the application of a transverse magnetic field results in a resistive
type force (called Lorentz force) similar to the drag force, and upon
increasing the values of M, the drag force increases which leads to
the deceleration of the flow. In Fig. 7, the profiles of velocity have
been plotted for various values of permeability parameter K by
keeping other parameters fixed. It is observed that for large values
of K, velocity and boundary layer thickness increase which explains
the physical situation that as K increases, the resistance of the
porous medium is lowered which increases the momentum
development of the flow regime, ultimately enhances the velocity
field. In Fig. 8 the influence of dimensionless time t on the velocity
profiles is shown. It is found that the velocity is an increasing
function of time t.

It is depicted from Fig. 9 that, the temperature decreases as the
Prandtl number Pr increases. It is justified due to the fact that
thermal conductivity of the fluid decreases with increasing Prandtl
number Pr and hence decreases the thermal boundary layer
thickness. Fig. 10 is plotted to show the effects of the dimensionless
time t on the temperature profiles. Four different values of time
t=0.1¢t=0.2,t=0.3and ¢t = 0.1 are chosen. Obviously the tem-
perature increases with increasing time t. This graphical behaviour
of temperature is in good agreement with the corresponding
boundary conditions of temperature profiles as shown in Equation
(8). Results for skin-friction and Nusselt number are computed in
Tables 1 and 2. The computations of skin-friction give complex
results. Therefore, for the sake of convenience we have considered
in Table 1 only its real part. The influence of Casson parameter on
velocity and skin-friction is found identical with the published
results of Mukhopadhyay [[23], see Figs. 3(a) and 7(a)]. Table 1
shows that skin-friction increases with increasing values of Pr
and wt whereas it decreases with increasing values of Gr, y and t.
On the other hand, it is found from Table 2 that Nusselt number
increases with increasing Pr whereas decreases with increasing t.
For the verification, we have compared our results with those of
Fetecau et al. [31]. This comparison is shown in Fig. 11. It is found
that our limiting solution (24) when y — oo, (graph shown by solid
line) are identical to Equation (8) (graph shown by filled squares)
obtained by Fetecau et al. [31]. This confirms the accuracy of our

Table 2

Nusstle number variations.
Pr t Nu
0.3 0.3 0.564
0.71 0.3 0.867
0.3 0.6 0.398

T T
e@e@e@ Present results, when M =0.5, K =0.2
—— Present results, when M= 1/K =0
0.8 = mm Results of Fetecau et al. [30] 7]
. 06F .
B
s
0.4 1
0.2~ .
0
0 2 4 6

y

Fig. 11. Comparison of the present result [see Equation (24), when y— o] with that
obtained by Fetecau et al. [31], [see Equation (8)], when t=02,0=0,a=1,
U=Tlandv=1.

obtained results. This figure further shows the comparison of ve-
locity profiles in the absence as well as in the presence of MHD and
porous medium. The graph for velocity when M = 0.5 and K = 0.2
are shown by filled circles whereas the graph for present velocity
when M = 1/K = 0 are zero is given by solid line. It is clearly seen
that the velocity decays early in the presence of MHD and porous
medium.

6. Conclusion

In this paper an exact analysis is performed to investigate the
unsteady boundary layer flow of a Casson fluid past an oscillating
vertical plate with constant wall temperature. The dimensionless
governing equations are solved by using the Laplace transform
technique. The results for velocity and temperature are obtained
and plotted graphically. The numerical results for skin-friction and
Nusselt number are computed in tables. The main conclusions of
this study are as follows:

1. Velocity increases with increasing Gr, K and t whereas decreases
with increasing values of Pr, M, vy and wt.

2. Temperature increases with increasing t whereas decreases
when Pr, is increased.

3. Skin-friction increases with increasing values of Pr,M and wt
whereas it decreases with increasing values of Gr, v, K and t.

4. Nusselt number increases with increasing Pr whereas decreases
with increasing t.

5. Solution (24) is found in excellent agreement with those ob-
tained by Fetecau et al. [31].
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