

Nitrogen-doped-TiO₂ nanocatalyst for selective photocatalytic CO_2 reduction to fuels in a monolith reactor

Beenish Tahir, Muhammad Tahir, Nor Aishah Saidina Amin*

Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

*Corresponding Author: noraishah@cheme.utm.my

Article history : Received 25 October 2015 Accepted 13 November 2015

ABSTRACT

In this study, photocatalytic CO₂ reduction with H₂ over nitrogen (N)-doped TiO₂ nanocatalyst in a monolith photoreactor has been investigated. The N-doped TiO₂ nanocatalyst was synthesized by sol-gel method, dip-coated over the monolith channels, and characterized by XRD, SEM and N₂ adsorption-desorption. Highly crystalline and anatase phase TiO₂ was produced in the N-doped TiO₂ samples with increased surface area and reduced crystallite size. The N-doped TiO₂ nanocatalyst demonstrated excellent photoactivity for selective CO₂ reduction to CO in a continuous monolith photoreactor. The 3 wt. % N-doped TiO₂ was found to be the most optimal, giving maximum CO yield rate of 56.30 µmole g-catal.⁻¹ h⁻¹ with selectivity of 96.3% at CO₂/H₂ feed ratio 1 and feed flow rate 20 mL/min. The performance of monolithic N-doped TiO₂ nanocatalyst for selective and continuous CO production was 4.7 fold higher than un-doped TiO₂. The significantly enhanced TiO₂ activity was evidently due to hindered charges recombination rate due to N-doping. The N-doped TO₂ gave prolonged stability for continuous CO and CH₄ production over the irradiation time.

Keywords: photocatalysis, N-doped TiO_2 , greenhouse gas CO_2 , H_2 reductant, monolith photoreactor

© 2015 Penerbit UTM Press. All rights reserved http://dx.doi.org/10.11113/mjfas.v11n3.379

1. INTRODUCTION

The increasing concentration of greenhouse gas in the atmosphere, in particular CO_2 , emitted during fossil fuels combustion is widely accepted as one of the main causes of global warming [1]. Researchers are relentlessly considering various methods to effectively reducing CO_2 concentration. Among the various technologies for CO_2 capture and sequestration, photocatalytic conversion of CO_2 into useful chemicals and fuels is among the prevalent research and gaining significant interests [2-4]. Thus, developing an efficient photocatalysis process seems to be an encouraging technology to alleviate CO_2 emissions and to produce energy bearing compounds.

Among the semiconductor materials, TiO_2 has numerous advantages such as strong oxidative potential, low cost, available in excess, chemically/thermally stable and non-toxic [5,6]. However, the efficiency of TiO_2 is low because of wide band gap (3.20 eV) and immediate recombination of photo-generated electron-hole pairs. Different metals such as Au, Ag, Cu, Ni, and Pt have been investigated to improve TiO_2 photoactivity and selectivity [7-9]. Among the non-metals C, S, F and N are considering as more effective and economical approach to improve TiO_2 photoactivity. However, nitrogen-loaded TiO_2 registered higher photoactivity due to efficient separation of electron-hole (e-/h+) pairs [10,11]. There are limited reports on photocatalytic CO₂ reduction with H₂ over Ndoped TiO₂ catalyst. Therefore, it is envisaged that Ndoped TiO₂ catalyst would be suitable to enhance CO₂ reduction efficiency via photocatalytic reverse water gas shift reaction.

In photocatalytic CO_2 reduction systems, the type of photoreactor and catalyst support is also vital. The photoreactor is efficient only if it has high ratio of active surface area to reactor volume, efficient light distribution and greater photonic efficiency [12]. Among the structured reactor, monoliths have been exploited for many industrial processes. Its unique structure and high surface area to volume ratio facilitates efficient light harvesting [13,14]. In this study, the N-doped TiO₂ photocatalyst for CO₂ reduction with H₂ in a monolith photoreactor has been investigated for the first time. Therefore, the objective of this study is to test the performance of a monolith photoreactor and N-doped TiO₂ catalyst for selective photocatalytic CO₂ reduction to fuels via reversed water gas shift reaction.

2. EXPERIMENTS

2.1 Catalyst Preparation

Nitrogen doped TiO₂ nanocatalysts were prepared via sol-gel single step method. Typically, 10 mL of titanium tetra-isopropoxide (Ti(C₃H₇O)₄) dispersed in 30 mL of isopropanol (C₃H₇O) was hydrolyzed by adding drop wise 7 mL of acetic acid (1M) dissolved in 10 mL isopropanol and stirred for 12 h. Next, an adequate amount of urea dissolved in DI water was added to titanium sol and stirred for another 6 h until a clear sol was produced. The sol obtained was poured into a glass container and was coated over the monolith channels. The amounts of N-doped were 1 to 5 wt. % to the TiO₂ samples. The same procedure was used to prepare TiO₂ nanoparticles.

2.2 Characterization

The crystalline structure of the catalyst was determined with X-ray diffraction (XRD) recorded on a powder diffractometer (Bruker Advance D8, 40 kV, 40 mA) using a Cu K α radiation source in the range of $2\theta = 10-70^{\circ}$. The morphology of the catalysts was observed using scanning electron microscope (SEM) with JEOL JSM6390 LV SEM instrument. The BET analysis of the catalyst was determined by N₂ adsorption-desorption isotherms using a Surfer-Thermo Scientific instrument. The catalyst was degassed at 523 K for 4 h before being subjected to N₂ adsorption, while N₂ adsorption-desorption properties were examined at 77 K. Pore size distributions and pore volumes were determined by means of Barrett-Joyner-Halenda (BJH) method.

2.3 Catalytic Activity Measurements

The CO_2 photoreduction with H_2 was conducted in a continuous monolith photoreactor system [15]. The reactor consisted of a stainless steel cylindrical vessel with total volume 150 cm³. It is equipped with a quartz window and a reflector lamp located above the reactor. The catalyst coated ceramic monoliths with channels per square inch (CPSI) 100 were inserted in the middle of the reactor chamber. The light source used was a 200W Hg reflector lamp. An optical process monitor ILT OPM-1D and a SED008/W sensor was used to measure the light intensity. Compressed CO2 and H2, regulated by mass flow controllers (MFC), were continuously passed through the reactor at feed ratio of CO₂/H₂ 1.0 and total flow rates of feed stream 20 mL/min. The products were analyzed using on-line gas chromatograph (GC-Agilent Technologies 6890 N, USA) equipped with a thermal conductivity detector (TCD) and a flame ionized detector (FID).

3. RESULTS AND DISCUSSION

3.1 Characterization of Nanocatalysts

Fig. 1 shows XRD spectra of TiO_2 and N-doped TiO_2 catalysts. XRD peak revealed pure crystalline and anatase phase TiO_2 . Similarly, peak of N-doped TiO_2 samples indicated the formation of anatase as the main crystalline phase. The peak attributable to nitrogen is not detected, possibly due to the low amount or it is uniformly distributed over the TiO_2 surface. Similar observations were reported previously [10].

Fig. 2 depicts SEM micrographs of un-coated and catalyst coated monolith channels to visualize the morphology. Seemingly, all the channels are uniform in size with cordierite structure and square shape as shown in Fig. 2 (a). Fig. 2 (b) revealed uneven and non-uniform channel surface. The catalyst coated monolith channels with uniform and un-broken layer could be seen in Fig. 2 (c). Similarly, Fig. 2 (d) indicates smooth catalyst layer distributed over the monolith channels.

The BET surface area, pore volume and pore diameter is summarized in Table 1. The BET surface area of TiO_2 increased from 43 to 47 m²/g by N-doping. However, increase in pore volume could be seen in N-doped TiO_2 sample. On the other hand, pore diameter slightly decreased in N-doped TiO_2 sample, possibly N distributed over TiO_2 surface hindered crystal growth.

Table 1 Summary of surface area, pore volume and pore diameter of TiO_2 and N-doped TiO_2 catalysts

Catalyst	BET surface area (m²/g)	BJH pore volume (cm ³ /g)	Pore diameter (nm)
TiO ₂	43	0.13	11
3% N/TiO ₂	47	0.15	10

Fig. 2 SEM images of un-coated and catalyst coated monolith channels: (a) bare monolith channels, (b) bare monolith channel surface, (c) catalyst coated monolith channels , (d) catalyst coated channels surface

3.2 Photoactivity test of CO_2 reduction with H_2

Fig. 3 illustrates the effects of different N-doping levels onto TiO₂ photoactivity for CO₂ photoreduction with H₂ to CO and CH₄ under UV-light irradiation in a continuous monolith photoreactor. The un-doped TiO₂ promotes CO production with smaller amount of CH₄ vield but yet poor photoactivity is registered. The N-doping into TiO₂ effectively promotes the formation of CO, the main product detected in gaseous mixture with appreciable amount of CH₄, over all the N-doped TiO₂ samples. The CO production increased remarkably with N-doping up to an optimum 3wt. % N-content, and then gradually decreased. Therefore, 3 wt. % N doped TiO₂ is the most effective over which amount of evolved CO reached to 178 µmole g-catal.⁻¹ after 2h of irradiation time, which was significantly higher than the un-doped TiO₂ (38 µmole gcatal.⁻¹). The higher yield of CO confirms hindered charges recombination rate by N-doping.

Fig. 4 illustrates dynamic CH_4 production as a function of irradiation time over un-doped TiO_2 and 3 wt. % N-doped TiO_2 monolithic catalysts. Evidently, the amount of CH_4 gradually increased with the irradiation time over N-doped TiO_2 catalysts. However, TiO_2 catalyst lost its photoactivity after 5h of irradiation time. This revealed prolonged stability of N-doped TiO_2 catalyst for continuous CH_4 production in a monolith photoreactor. The yield of CH_4 over N-doped TiO_2 was 3.3 fold higher than pure TiO_2 monolithic catalyst, confirming N-metal serves as an efficient charges separation doped in TiO_2 catalyst for CO_2 photo-reduction to CH_4 .

The yield of CO production via CO_2 reduction over TiO_2 and N-doped TiO_2 at different irradiation times is presented in Fig. 5. Initially, the yield of CO production is much faster, but gradually decreased after 4 h of irradiation time over both catalysts. The amount of CO produced over 3 wt. % N-doped TiO₂ monolithic catalyst was 225 µmole g-catal.⁻¹, significantly high than the un-doped TiO₂. The

much higher photoactivity confirms the potential of CO_2 reduction with H_2 in monolith photoreactor. At prolonged irradiation times, CO production decreased over both catalysts, possibly due to decrease in catalysts photoactivity in continuous operation of monolith photoreactor. However, N-doped TiO₂ catalyst found more stable than TiO₂, confirming N-doped into TiO₂ provides both activity and photostability.

Fig. 3 Effect of N-loading on TiO_2 photoactivity for CO_2 reduction with H_2 for irradiation time 2h, CO_2/H_2 ratio 1.0 and feed flow rate 20 mL/min

Fig. 4 Effect of irradiation time on CO_2 photoreduction with H_2 to CH_4 over TiO_2 and N/TiO_2 catalyst in continuous monolith photoreactor at CO_2/H_2 ratio 1.0 and feed flow rate 20 mL/min

Table 2 summarizes yield rates and selectivity of different products over TiO_2 and N-doped TiO_2 catalysts during photocatalytic CO_2 reduction with H_2 . The products observed were CO and CH_4 with traces of C_2H_4 and C_2 H_6 over N-dopedTiO₂ monolithic catalysts. The photoactivity

for CO production over N-doped TiO₂ was 56.12 µmole gcatal.⁻¹ h⁻¹ which was 4.7 fold high than un-doped TiO₂. The selectivity of CO production over TiO₂ and N-doped TiO₂ were much closer, about to 96 %. Recently, N-doped TiO₂ catalyst has been reported for CH₃OH production with yield rate of 23 µmole g-catal.⁻¹ h⁻¹ in a batch mode operation of photoreactor. [11]. Similarly, g-C₃N₄-N-TiO₂ hetero-junction was tested for CO₂ reduction with H₂O to CO with maximum yield of 14.73 µmole after 12 h irradiation time in batch mode operation [16]. Therefore, the role of N is prominent and much higher CO production was conceivably due to efficient separation of charges by N-metal and obviously due to a larger illuminated surface area with higher photon energy consumption over monolith channels [17].

Fig. 5 Selective CO_2 photoreduction to CO over N/TiO₂ at different irradiation time in a continuous monolith photoreactor using CO_2/H_2 ratio 1.0 and feed flow rate 20 mL/min.

Table 2 Summary of yield rates and selectivity of products during	,
CO_2 reduction with H_2 over TiO_2 and N-doped TiO_2 catalysts	

	Yield rate		Selectivity	
Catalyst	(µmole g.catal, ⁻¹ h ⁻¹)		(%)	
	СО	CH ₄	CO	CH ₄
TiO ₂	12.12	0.46	96.34	3.65
3% N/TiO ₂	56.30	2.15	96.32	3.68

4. CONCLUSION

The N-doped TiO₂ monolithic nanocatalysts were tested for continuous CO₂ reduction with H₂ in a monolith photoreactor. CO and CH₄ were observed as the main products during CO₂ reduction. The photoactivity of Ndoped TiO₂ was 4.7 fold greater than pure TiO₂ with selectivity 96 % at CO₂/H₂ mole ratio 1.0, and feed flow rate 20 mL/min. The N-doped TiO₂ was very stable for CH₄ production while its photoactivity gradually reduced for CO production after 4 h of irradiation time. On the other hand, a lower stability of TiO₂ catalyst observed for both CO and CH₄ production. The higher efficiency of Ndoped TiO₂ and monolith photoreactor was obviously due to a larger illuminated surface area, higher photon energy consumption and better charges separation by N-element.

ACKNOWLEDGEMENTS

The authors would like to extend their deepest appreciation to MOHE and Universiti Teknologi Malaysia for the financial support under Vot 02G14 and Vot 4F404.

REFERENCES

- M. Tahir, N.S. Amin, Renewable Sustainable Energy Rev. 25 (2013) 560.
- [2] Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu, Z. Zou, Crystal Growth & Design 12 (2012) 1476.
- [3] E. Liu, L. Qi, J. Bian, Y. Chen, X. Hu, J. Fan, H. Liu, C. Zhu, Q. Wang, Mater. Res. Bull. 68 (2015) 203.
- [4] M. Tahir, N.S. Amin, Appl. Catal., B: Environ. 142-143 (2013) 512.
- [5] R. Sasikala, A.R. Shirole, V. Sudarsan, Jagannath, C. Sudakar, R. Naik, R. Rao, S.R. Bharadwaj, Appl. Catal. A: Gen. 377 (2010) 47.
- [6] L. Liu, F. Gao, H. Zhao, Y. Li, Appl. Catal., B: Environ. 134-135 (2013) 349.
- [7] D. Kong, J.Z.Y. Tan, F. Yang, J. Zeng, X. Zhang, Appl. Surf. Sci. 277 (2013) 105.
- [8] B.S. Kwak, K. Vignesh, N.-K. Park, H.-J. Ryu, J.-I. Baek, M. Kang, Fuel 143 (2015) 570.
- [9] Z. Xiong, H. Wang, N. Xu, H. Li, B. Fang, Y. Zhao, J. Zhang, C. Zheng, Int. J. Hydrogen Energ. 40 (2015) 10049.
- [10] X. Li, Z. Zhuang, W. Li, H. Pan, Appl. Catal. A: Gen. 429-430 (2012) 31.
- [11] B. Michalkiewicz, J. Majewska, G. Kądziołka, K. Bubacz, S. Mozia, A.W. Morawski, Journal of CO₂ Utilization 5 (2014) 47.
- [12] K. Yuan, L. Yang, X. Du, Y. Yang, Energy Convers. Manage. 81 (2014) 98.
- [13] M. Tahir, N.S. Amin, Chem. Eng. J. 230 (2013). 314.
- [14] P.-Y. Liou, S.-C. Chen, J.C.S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Energy Environ. Sci. 4 (2011) 1487.
- [15] M. Tahir, B. Tahir, N.S. Amin, Mater. Res. Bull. 63 (2015) 13.
- [16] S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Appl. Catal., B: Environ. 158–159 (2014) 20.
- [17] B. Tahir, M. Tahir, N.S. Amin, Energy Convers. Manage. 90 (2015) 272.