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An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical
oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved
analytically using Adomian decomposition method (ADM). Expressions for velocity field have been
obtained. Optimal asymptotic method (OHAM) has also been used for comparison. The effects of Stocks
number, frequency parameter and pressure gradient parameters have been sketched graphically and
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1. Introduction

The flow of thin fluid has many applications in our daily life. In
engineering we see their usage in condensers, distillation units and
heat exchangers. In geophysical events we see thin fluid films in the
forms of drilling mud, heat pipes and debris flow. In biological
science thin fluid films coating the airways in the lungs and thin
tear films covering the eye.

On the other hand, non-Newtonian fluids in view of their
numerous applications in engineering and industry have been
widely studied. For example, few of these applications in industry
are found in wire and fiber coating, paper production, transpiration
cooling and gaseous diffusion. Considerable efforts have been made
to study non-Newtonian fluids through analytical and numerical
treatment. Rehan et al. [1] studied unsteady flow of a second grade
fluid between a wire and die with one oscillating boundary and
other stationary.
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The physical importance of thin film has been investigated
and discussed by various scientists [2—6]. Amongst them, the
thin film flow of a power law model liquid falling down an in-
clined plate was discussed by Miladinova et al. [7], where they
observed that saturation of non-linear interaction occurred in a
finite amplitude permanent wave. Alam et al. [8] investigated
the thin-film flow of Johnson-Segalman fluids for lifting and
drainage problems and observed the effects of various parame-
ters on the lift and drainage velocity profiles. In the literature
several mathematical models of non-Newtonian fluids have been
proposed. One of the well-known model amongst the non-
Newtonian fluids is a subclass of differential type fluids known
as second grade fluids which has its constitutive equations based
on strong theoretical foundations. Based on this motivation, for
the present research we have chosen the second grade fluid as
non-Newtonian fluid.

In order to solve the real world problems, different numerical,
exact and approximate techniques have been used in mathematics,
fluid mechanics and engineering sciences [9—11]|. Some of the
common methods are HAM and OHAM [12,13]. Application of
optimal homotopy asymptotic method for solving non-linear
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equations arising in heat transfer was investigated by Marinca et al.
[14]. In another investigation Marinca et al. [15] have used optimal
homotopy asymptotic method for the steady flow of a fourth-grade
fluid past a porous plate. Besides that the thin film unsteady flow
with variable viscosity has been investigated by Nadeem and Awais
[16]. They have analyzed the effect of variable thermo capillarity on
the flow and heat transfer. Khajohnsaksumeth et al. [17] studied the
effects of slip boundary conditions on the flow of a non-Newtonian
fluid through micro channels. They used modified second-grade
fluid model where they represented viscosity and the normal
stresses in terms of shear rate. The application of their work is
focused on blood flow in the cardiovascular system. Taza Gul et al.
[18] used ADM and OHAM for the solution of thin film flow of a
third grade fluid on a vertical belt with slip boundary conditions.
They analyzed the comparison of these two methods.

The main aim of the present work is to study the effects of
oscillation into a thin film flow of an unsteady second grade fluid
over a vertical belt using ADM and OHAM [19—24].

2. Basic equations

The constitutive equations for an incompressible unsteady flow
are

V-u=0, (1)
u
P =V T+re (2)

where p is the constant density, g is used as force per unit mass, u is
the velocity vector, L = Vu, D/Dt = 9/8t + (u-V) denotes material
time derivative and T is the Cauchy stress tensor which has the
following form for a second grade fluid

T = —pl+ uA; + 1Ay + A7, (3)

here —pl denote spherical stress, a1 and «y are the material con-
stants and A4, A; are the kinematical tensors defined as:

A = (Vu) + (V)T (4)
An:%ﬂn,mvuwwmhw n>1. (5)

3. Formulation of the lift problem

Consider a wide flat belt moving vertically upward at time t > 0,
the belt is oscillated and translated with constant speed U through
a large bath of second grade liquid. The belt carries with itself a
layer of liquid of constant thickness d. Coordinate system is chosen
for analysis in which the x-axis is taken parallel to the surface of
the belt and y-axis is perpendicular to the belt. Uniform magnetic
field is applied transversely to the belt. Assuming the flow is un-
steady and laminar after a small distance above the liquid surface
layer.

The velocity field for the present flow is defined as:

u=(0,u(x,t),0) (6)

The associated boundary conditions are:

ou(x,t)

o =0 at x=96.

at x =0,

u(x,t) = U+ UQcoswt
(7)

Here Q is used as amplitude and w is used as frequency of the
oscillating belt.

Inserting the velocity field from Eq. (6) in continuity Eq. (1) and
in momentum Eqs. (2) and (3), the continuity Eq. (1) satisfies
identically and Egs. (2) and (3) are reduced to the following com-
ponents of stress tensor

Toe P12 ou)? (8)
o =P+ (2ar +ag){ ),
ou 0 /ou
Ty = Fax T %5 (&)7 9)
ou\ 2
T, = —P, (11)

Making use of Egs. (8)—(12) into Eq. (3), we get

0%u o [o%u
+M6X_2+a1& <m> - pg. (13)

Introducing the following non-dimensional variables

u_ 9
Pat ~ "oy

2 2
gl g% oM @O, 0P
U ) p 6% © u Udy
) (14)
g 8
t ﬂ.U’ p627

where  is the frequency parameter, A is non-dimensional pressure
gradient parameter, « is the non-Newtonian parameter, ¢t is time
parameter and S; is the Stock's number.

Introducing Eq. (14) into Eq. (13) and dropping out the bar no-
tations, we obtain

ou ?u a8 [d%u

The corresponding boundary conditions (7) are reduced to

un(0,t) =1+ Qcos wt , and W:O, n=0, (16)
un(0,) = 0, %:o, n>1. (17)

4. Analysis of Adomain decomposition method
The Adomian decomposition method (ADM) is used to decom-

pose the unknown function u(x, t) into a sum of an infinite number
of components defined by the decomposition series.

u(x,t) :iun(x,t), (18)
n=0
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The decomposition method is used to find the components.
ug(x,t),u1(x,t),ux(x,t)... separately. The determination of these
components can be obtained through simple integrals. To give a
clear overview of (ADM), we consider the partial differential
equation in an operator form as

Leu(x, t) + Lyu(x, t) + Ru(x, t) + Nu(x, t) = g(x,t), (19)

Lyu(x,t) = g(x,t) — Lru(x,t) — Ru(x, t) — Nu(x, t), (20)

where L, = 8?/0x2 and L; = 8/t are linear operators in the partial
differential equation and are easily invertible, g(x, t) is a source
term, Ru(x, t) is a remaining linear term and Nu(x, t) is non-linear
analytical term expandable in the Adomian polynomials Ap.

After applying the inverse operator L;! to both sides of Eq. (20),
we write

Ly Lyu(x, t) = Ly 'g(x, t) — Ly 'Leu(x, t) — Ly 'Ru(x, t)
— Ly 'Nu(x, t), (21)
u(x,t) = f(x,t) — Ly 'Leu(x, t) — Ly 'Ru(x, t) — Ly 'Nu(x, t).  (22)

Here the function f{x, t) represents the terms arising from L~ g(x, t),
after using the given conditions. Ly = [/(.)dxdx is used as inverse
operator for the second order partial differential equation.

Adomian decomposition method defines the series solution
u(x, t) as

ux,t) = i Un(x,t), (23)
k=0

Sun(xt) =fx,0) = L 'L > un(x,6) — LR  un(x, 1)
n=0 n=0 n=0

- L;1Niun(x, t). (24)

The non-linear term is expanded in Adomian polynomials as

N> un(x,t) =S An, (25)
n=0 n=0
where the components ug(x, t), u1(x, t), ua(x, t)...... are periodically
derived as,
Ug(x,t) + ug(x,t) + up(x,t)... = f(x,t) — L;lLt(uO(x, t) +uq(x,t)
+Up(x,6)...) — L 'R(up (x, 1)

+ur(x,t) + uz(x,t)...)
— LY (Ag + A + Az
(26)

To determine the components of the series ug(x, t) + uq(x,
t) + up(x, £)...... it is important to note that ADM suggests that the
zeroth component ug(x, t) is usually defined by the function f(x, t)
described above.

The formal recursive relation is defined as:

up(x,t) = f(x, )

up(x,t) = —Ly Lf[uooc £)] — Ly 'Rlug (x, £)] — Ly '[Ao),

up(x,t) = —Ly Lt[uﬂx t)] — Ly 'Rlug (x, £)] — Ly '[Aq],

us(x,t) = —Lg 'Le[uy (x, t)] — Ly 'R[uz (%, t)] — L '[A;], and so on.

(27)

5. Optimal homotopy asymptotic method

For the analysis of OHAM we consider the boundary value
problem as consider in [14]:

L(@i(x)) + N(@i(x)) + G(x) = 0, B( %‘;) =0, (28)

where [ a linear operator in the differential equation is, N is a non-
linear term, xR is an independent variable, B is a boundary
operator and G is a source term. According to [ 14] we construct a set
of equation for OHAM.

[1 - pl[Lo(x.p) + Gx)| =H(p) [Lo(x.p) + G(x) + No(x.p)]
nl ~ 6¢(X7P) _
B(axp). "P5:)) ~0,
(29)
p<|[0,1] is an embedding parameter, H(p), is a non-zero auxil-

iary function for p # 0 and H(0) = 0. ¢(x, p) is an unknown function.
Obviously, when p = 0 and p = 1, it holds that:

¢(X7 0) = ﬁO(X)7 ¢(X7 1) = fl(X), (30)

when p varies from O to 1 then ¢(x, p) also varies from i (x) to @i(x).
Where the zero component solution iig(x) is obtained from Eq. (29)
when p =0,

= ~ = dulg(x

Lito(x) + 600 = 0. B(io(x. %) 0, (31)
Auxiliary function H(p) is choosing as

H(p) = pc; +p°ca + ..., (32)

cy, ¢ are auxiliary constants.

Marinca [14] uses a special procedure to expand ¢(x,p) with
respect to p by using Taylor series.
ilo(x) + > fy(x,c)p, i=1,2, .. (33)

k>1

o(x,p,¢i) =

Inserting Eq. (33) into Eq. (29), collecting the same powers of p,
and equating each coefficient of p, the zero order problem is given
in equation (31) and the first and second order are given in Egs. (34)
and (35).

k(i () + 69 = 1o, B(in (0. ) —0, (34)

:CzNo(ilo (X))
+ 1 [Ln ) + M (o), 11 ()], 35,

B(ﬂz(x), aug—f‘)) =0.

The general governing equations for uy(x) are given by

L(iiz(x)) — L(11 (x))
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— L(wy_1(x)) = cxNo(tig (%))

k-1
+> ¢ F‘(ﬁk—i(x)) + Ni_1 (g (x), 1 (). (X)) |,
i1

B(ﬂk(x), a”a"—)g")) =0,

I‘(ﬁk(x))

k=23, ..,
(36)

here Nm(ﬂo(x),m (x)..lly,_1(x)) is the coefficient of p™, in the
expansion of No(x, p).

o0

No(iip(x)) + Z

m=1

N(@(x,p, ;) = m(Uo(X), Uy (X)..lim (X))p"™.

(37)

The convergence of the Series in Eq. (33) depend upon the
auxiliary constants cy, ¢y,... If it converges at p = 1, then the mth
order approximation  is

i(X,€1,62...Gp). (38)

m
Cm) = flg(X) + Z

i=1

ﬂ(x7 €1,62..

Inserting Eq. (38) into Eq. (28), the residual is obtained as:

R(x,c;) = L(u(x, ;) + G(X) + N(@(x, ¢;)),

Numerous methods like Ritz Method, Method of Least Squares,
Galerkin's Method and Collocation Method are used to find the
optimal values of ¢;, i = 1,2,3,4.... We apply the Method of Least
Squares in our problem as given below:

i=1,2..m (39)

b
)
J(€1,Ca o) = / R (x,¢1, G, ..om)dx, (40)
a

where a and b are the constant values taking from domain of the
problem.

Auxiliary constants (cy, c2,...c;) can be identified from:

v _d_ o (41)

E_GCZ

Finally, from these auxiliary constants, the approximate solution
is well-determined.

6. Solution of lifting problem
6.1. ADM solution
The inverse operator L' = [/(.)dx’ is applied on the second

order differential Eq. (15) and according to the standard form of
ADM from Eq. (22):

u(x,t) = f(x) + Ly 1 (Lew) — alg VLe(Lew)), (42)

with L = 8/0t, Ly = 8% /0x2,

so that u(x,t) = f(x) + Ly (:t ) —al! L?t (222:;)} (43)

Summation is used for the series solutions of Eq. (43):

Zun (x,8) =f(x) + Ly <% g%(&ﬂ)
{ <ax2 iun X, t) )} (44)

The series solution of Eq. (44) is derived as:

Ug(X, &) +uq(x,t) +up(X,t) + ...

=00 + I, (aat (1o, )

+up(x, t) + up(x, t) + ))

2
~al! [aat (a (o2, )

+ug(x, t) + up(x, t) + ))}

(45)

The velocity components are obtained by comparing both sides
of Eq. (45).
Components of the lift problem up to second order are:

o“u
Uo(X, t) :f(x) = Lx < aXZO St p> (46)
au ENEETY
uy(x,t) = L1 0 —al! at(é}(;’) , (47)
,1au1 o (0%u)]

Making use of boundary conditions from Eqs. (16) and (17) into
Eqgs. (46)—(48), the zero, first and second components solutions are
obtained as:

Uo(x, t) :%(—1 +x)(— 2 + x4 — 2QCos[tw] + XS¢), (49)
ur(x,t) = % (- 2xoSinte] + 3x%Sinte] - XwSinjtw]),  (50)
(X0 = 355 60 (- 8xw2Cos[tw] + 206 w*Costo]

— 15x*w?Cos[tw] + 3x°w?Cos|tw] — 120xaw?Cos|tw]
+ 180x2aw?Cos|tw] — 60X3aw2COS[tw]>.
(51)

The series solution up to the second component is given as:

u(x,t) = ug(x,t) + ug(x,t) + uy (x, t). (52)

Inserting components solutions from Eqs. (49)—(51), in the se-
ries solution (52), we have:
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Moving and
Oscillating belt

Thin Film

——

Fig. 1. Geometry of Lift problem.

u( ( — 8xw2Cos|tw] + 20x3w2Cos[tw]

1
X, t) :ﬁ
— 15x*w?Cos[tw] + 3x°w?Cos[tw] — 120xaw?Cos|tw]

+ 180x2aw?Cos|tw] — 60x3aw2Cos[tw])

n % ( — 2xwSin[tw] + 3x2wSin|tw] — x3wSin[tw])

+ % (=1+x)(— 2+ xA— 2QCos[tw] — XxS¢).
(53)

6.2. OHAM solution

We formulate a homotopy for Eq. (15) from the standard form of
OHAM into Eq. (29). According to above discussion the zero, first
and second component problems are:

9%u
p°: A+St—W20:O. (54)
uy 0%y 9%u
1 0 0 0
D A=20 =St — St — =2+ —2 4 ¢—2
p C1 St C]St Cq prs -+ ox2 +C1 %) (55)
+ acC g azﬂ _azi—o
1ot \ ox2 oz
Oscillating Belt

Thin Film

m‘_

——

Fig. 2. Geometry of Drainage problem.

u(x)

X

Fig. 3. Comparison of ADM and OHAM methods for lift velocity profile w = 0.2,
a=002,U=15=1,1=2,Q=1.

ou ou 9%u 9 (0%u
2 0 1 0 0
: —AC) — St — C)— — C1— + Cr——- CO— | —5
p 27— Oy 16t+26x2+a26t<6x2>
aZU] aZU] i) 62u] azuz
— +C0—5 t+ati— |- | ——5=0
T T T Y% e X2
(56)

Solving Eqs. (54)—(56) by using the corresponding boundary
conditions given in Egs. (16) and (17) are

Ug(x,t) = !

=5 (=1+X)( =2 +x2 — 20Cos|tw] + X5¢), (57)

Uy (x,t,c1) = % ( — 2xwSintw]c; +3x2wSin[tw]c; — x3wSin[tw]c1) ,

(58)

u(x)

X

Fig. 4. Comparison of ADM and OHAM methods for drainage velocity profile
c; = —1.001669, c; = —0.000189.
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Fig. 5. Influence of different time level on lift velocity profile.

Uy (x,t,cy) = 31@
— 60x3wSin|tw|c; — 8xw?Cos[tw]c?
+ 20x3w?Cos[tw]c? — 15x*w?Cos[tw]c?
+ 3x°w?Cos|tw|c? — 120xaw?Cos|tw|c
+ 180x? aw?Cos[tw]c? — 60x> aw?Cos|tw]c?
— 120xwSintw]c? + 180x%wSin[tw]c?
— 60x3wSin[tw]c? — 120xwSin|tw]c,

+ 180x%wSin[tw]cy — 60x3wSin[tw]cz). (59)

( — 120xwSin|tw]c; + 180x%wSin[tw]cy

The series solution of velocity profile is:

U(x,t,¢;) = ug(x, t) +uq(x,t,c1) +Up(x, t,¢3). (60)

The arbitrary constants G;, i = 1,2 are find out by using the
residual:

Fig. 6. Influence of different time level on drainage velocity.

Fig. 7. Lift velocity distribution of fluid when w = 0.2, « = 0.02, S, =1, 1 =2,{ = 0.9.

R=L(ii(x,t,c;)) + N(@i(x, t,¢;)) + G(li(x, t, ¢;)). (61)

According to Egs. (40) and (41), the arbitrary constants for ve-
locity components ug(x, t), ui(x, t, c1) and uy(x, t, c3) are:

c1 = —1.0016691463222276,

¢y = —0.0001895412688948106. (62)

Inserting the auxiliary constants from Eq. (62) in the series so-
lution (60), we obtained the velocity profile as:

ux, t) = 31@ ( — 8.02673xw?Cos[tw] + 20.06682x> w2 Cos|tw)]
— 15.05012x*w?Cos|tw] + 3.01003x°w?Cos|tw)]
— 120.40093xaw?Cos[tw] + 180.60139x% aw?Cos[tw)
— 60.20046X3 1w Cos[tw] — 0.17788xwSin|tw]
+ 0.26683x%wSin[tw] — 0.08894x3wSin[tw])
+ é (2‘00334XwSin[tw] —3.00501x%wSin[tw]
+ 1.00167x3w5in[tw]) + % (=14 x)(—2+x2
— 2QCos[tw] — XSt).
(63)
o[\ Q N Qn‘)hn
A \ \ N\ N
041 o T L L L
i NN NN NN )
02+ B
[ - x=0.2 ]
00k - x=0.3 ]
CHE ~ x=04 ]
S ool | [ x=0s 1
—0.8;\ PRI R AN R AR A B SR AR U R u*
0 50 100 150 200 250 300

t

Fig. 8. Drainage velocity distribution of fluid when w = 0.2, &« = 0.02, S; = 1, A = 2,
£=09.
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Fig. 9. Combine effect of the Stock number and pressure gradient parameter on the lift
velocity when w = 0.2, « = 0.02, t = 10, x = 0.5, £ = 0.9.

7. Formulation of drainage problem

The geometry and assumptions of the problem are same as in
previous problem. We consider a film of non-Newtonian liquid
drains down the vertical belt. The belt is only oscillating and the
fluid drain down the belt due to gravity. The gravity in this case is
opposite to the previous case. The coordinate system is selected
same as in previous case. Assuming the flow is unsteady and
laminar, consider fluid shear forces keep the gravity balanced and
the film thickness remains constant.

Boundary conditions for drainage problem:

ou(x,t)
ox
Using non-dimensional variables from Eq. (14), the governing

Eq. (13) and boundary conditions (64) of drainage problem are
reduced to:

ou Pu 9 [du
f)l'_p+f),v2+a(,)t(a)(2>+st7 (65)

u(x,t) = Qcoswt at x =0,

=0 at x=0. (64)

u(x)

0,10;\ . . . I . . . I . . . I . . . I . . ‘\\:

Fig. 10. Combine effect of the Stock number and pressure gradient parameter on the
lift velocity when w = 0.2, a = 0.02, t = 10, x = 0.5, £ = 0.9.

Fig. 11. Effect of frequency parameter on the lift velocity when v = 0.2, « = 0.02,
Sp=04,1=2,t=10,¢=09.

dun(1,t)

up(o,t) = Q cos wt, and dx

=0, n=0. (66)
8. Solution of drainage problem
8.1. ADM solution

The model for drainage problem is same as for the left problem.
The only difference is that due to the draining of thin film the Stock

number is positively mentioned in Eq. (65).
Components of the lift problem up to second order are:

2
uo(x,t) = f(x) = L1 (aa% 45— x). (67)

Making use of boundary conditions from Eq. (59) in Eq. (60) the
zero component solution is obtained as:

ug(x,t) = = (=1 4+ x)(xa — 2QCos[tw] — XS¢). (68)

N —

u(x)

Fig. 12. Effect of frequency parameter on the lift velocity when w = 0.2, o = 0.02,
Sp=04,1=2,t=10,¢=09.
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Fig. 13. The effect of non-dimensional 4, on lift velocity when v = 0.2, « = 0.02,
St=04,t=10,¢ =009.

The first and second components solution mentioned in Egs.
(50) and (51) are same due to the same boundary conditions of Eq.
(17).

The series solution up to the second component is as:

U(X, t) = uO(X, t) +Uq (X, t) + U2(X, t) (69)

Inserting components solutions from Eq. (68) and from Eqgs. (60)
and (61), in the series solution (68) we have:

1

+ 3x°w?Cos|tw] — 120Xaw?Cos[tw] + 180x*aw?Cos|tw]

( — 8xw?Cos|tw] + 20x>w?Cos[tw] — 15x*w?Cos|tw]

— 60x3 awZCOS[tw]) + % ( — 2xwSin|tw] + 3x2wSin|te]

- x3wSin[tw]) + % (—1 + x)(xA — 2QCos]tw] — XS¢).
(70)

u(x)

Fig. 14. The effect of non-dimensional 4, on lift velocity when v = 0.2, « = 0.02,
St=04,t=10,¢ =09.

Fig. 15. Effect of S;, on drain velocity profile when v = 0.2, « = 0.02, 1 = 2, t = 10,
£=09.

8.2. OHAM solution

From the standard form of OHAM in Eq. (29), we construct a
homotopy for Eq. (65). According to above discussion the zero, first
and second component problems are:

62u0
pOZA—S[‘—aX—ZZO, (7])
ug  o%u o%u
1 0 0 0
T —A—2C1+ St + 1St — )+ —5 + C1—>
p I e e T R
o (0%u 9%u (72)
Fagd (Tl T
ot \ ox2 ox2
2. 3y + oSt — cy N0 c('M]Jrc"jzqurozc6 QU
P 22 = Qe ~ O T 2% T % e
82U, 82U, 9 (0%u;\ 0%uy
— + 00— +taCi—|— | ——==0.
Toaxz T T % e 02
(73)

Solving Eq. (71)

by using the corresponding boundary

u(x)

Fig. 16. Effect of S;, on drain velocity profile when w = 0.2, « = 0.02, A = 2, t = 10,
£=09.
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Fig. 17. Effect of frequency w, on drainage velocity when a = 0.02, S; = 0.4, A =2, t = 10,
£=09.

conditions given in Eq. (66). The zero component solution ob-
tained as:

Ug(x,t) = % (=1 +x)(xp — 2QCos[tw] — xSt). (74)

The first and second components solution mentioned in Egs.
(58) and (59) are same due to the same boundary conditions of Eq.
(17), and the series solutions of velocity profile is:

u(x, t,c;) = ug(x,t) + ug(x,t) + uy(x,t). (75)

Arbitrary constants C;, i = 1, 2 are find out by using the same
method mentioned in Eq. (55) whereas the arbitrary constants for
velocity components ug(x, t), ui(x, t) and ux(x, t) are same as given in
Eq. (62). Inserting the auxiliary constants in the series solution (75),
we obtained the velocity profile as:

u(x)

Fig. 18. Effect of frequency w, on drainage velocity when a = 0.02, S; = 04, 1 = 2,
t=10,¢=09.

Fig. 19. The effect of bulk modulus on drain velocity when v = 0.2, « = 0.02, t = 10,
£=009,5 =04

u(x,t)

=31ﬁ ( — 8.02673xw? Cos|tw] + 20.06682x3w? Cos|tw]

—15.05012x*w? Cos[tw] + 3.01003x°w? Cos[tw]

— 120.40093xaw? Cos[tw] + 180.60139x%aw? Cos[tw]
— 60.20046x3 aw? Cos|tw] — 0.17788xw Sin|tw]

+ 0.26683x%w Sin[tw] — 0.08894x3 wSin[tw})

+ % (2.00334Xw Sin[tw] — 3.00501x2w Sin|te)]

+1.00167x30 Sin[tw]) + % (—1+x)
x (XA —2Q Cos[tw] — xS¢)
(76)

9. Results and discussion

In this article we present and interpret several results for the
thin film unsteady flow of a second grade fluid over a vertical belt.
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Fig. 20. The effect of bulk modulus on drain velocity when w = 0.2, « = 0.02, t = 10,
£=09,5 =04
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Table 1
Comparison of OHAM & ADM for lift velocity when w = 0.2, « = 0.02,S; = 0.5, 1 = 2,
t=0.01,Q=1.

Table 4
Comparison of OHAM and ADM for drain velocity when w = 0.2, « = 0.02, S; = 0.5,
A=2,t=001,Q=1.

X OHAM ADM Absolute error X OHAM ADM Absolute error
0.0 2 2 0 0.0 0.999998 0.999998 0

0.1 1.6874 1.68738 2.24x107° 0.1 0.8324 0.832377 2.24x107°
0.2 1.39982 1.39978 3.77x107° 0.2 0.6798 0.67978 3.77x107°
0.3 1.13725 1.13721 467x107° 0.3 0.5423 0.54220 467x107°
0.4 0.89972 0.89967 5.01x107° 0.4 0.4197 0.41967 5.01x107°
0.5 0.68722 0.68716 4.89x107° 0.5 0.3122 031216 4.89%x107°
0.6 0.49973 0.49969 4.38x107° 0.6 0.2197 0.21968 438x107°
0.7 0.33727 0.33724 3.35x107° 0.7 0.1423 0.14224 3.55x107°
0.8 0.19984 0.19982 2.50x107° 0.8 0.0798 0.07982 2.50x107°
0.9 0.08742 0.08741 1.29x107° 0.9 0.0324 0.03241 1.29x107°
1.0 1.8131x10°"° 1.5419x10°'° 2.710x10-2° 1.0 1.813x10° 10 1.541x10"° 2.71x10°%0

Figs. 1 and 2 show the geometry of lift and drainage velocity
profiles. The effects of non-dimensional physical parameter such
as Stock number S;, frequency parameter w, pressure gradient
parameter A and non-Newtonian parameter « in lifting and
drainage problems are discussed in Figs. 3—20. A comparison of
the ADM and OHAM solutions are shown in Figs. 3—6 for various
values of physical parameters and are found in excellent agree-
ment. The numerical comparison of ADM and OHAM at different
time levels are derived in Tables 1—6 for both lift and drainage
velocity profiles respectively. It is observed from these tables that
absolute error between ADM and OHAM decreases with decrease
in time level, while it increases with increase in time level. As the
flow of fluid film is subjected to the oscillation as well as trans-
lation of the belt, so the velocity of the fluid film will be high at the
surface of the belt comparatively to the residual domain and will
decrease gradually for the fluid film away from the surface of the
belt. These conclusions are observed from Tables 7 and 8 and

Table 2
Comparison of OHAM & ADM for lift velocity when w = 0.2, « = 0.02,S; = 0.5, A = 2,
t=003,Q=1

Figs. 7 and 8. The velocity of belt decreases with increasing Stock
number in lift velocity profile. So increase in S; and 1 decreases
velocity of fluid film observed in Figs. 9 and 10. In Figs. 11, 12 and
17,18 both consecutively for lift and drainage velocity profiles,
increase in non-dimensional frequency w change the direction of
fluid flow frequently and steadily converges to a point on the
surface of the fluid. If the belt velocity increases with oscillation,
then the centripetal force decreases which results in decrease in
the velocity of fluid. The effect of pressure gradient parameter A on
lift and drainage velocity distribution is consecutively derived in
Figs. 13 and 14 and in 19,20. Increase in A decreases the velocity of
fluid because it is inversely proportional to velocity of the belt.
Figs. 15 and 16 show the effect of Stock number on drainage ve-
locity profile. During oscillation of the belt, Stock number is pro-
portional to the drainage velocity of fluid. Therefore, increase in
Stock number increases the velocity of fluid.

Table5
Comparison of OHAM and ADM for drain velocity when w = 0.2, « = 0.02, S; = 0.5,
A=2,t=003Q=1

X OHAM ADM Absolute error X OHAM ADM Absolute error
0.0 1.99998 1.99998 0 0.0 0.9999982 0.9999982 0

0.1 1.68741 1.68734 2.24x107° 0.1 0.832408 0.83234 2.24x107°
0.2 1.39984 1.39973 3.77x107> 0.2 0.679842 0.67973 3.77x107°
03 1.13729 1.13715 467x107° 0.3 0.54229 0.54215 467x107°
04 0.89976 0.89961 5.01x107> 04 0.41976 0.41961 5.01x107°
0.5 0.68726 0.68711 4.89%x107° 0.5 0.31225 0.31211 4.89%x107°
0.6 0.49977 0.49964 4.38x107° 0.6 0.21977 0.21964 4.38x107°
0.7 0.33731 0.33719 3.35x107° 0.7 0.14231 0.14219 3.55x107°
0.8 0.19986 0.19978 2.50%x107> 0.8 0.07986 0.07978 2.50x107>
0.9 0.08743 0.08738 1.29x107° 0.9 0.03243 0.03238 1.29x107°
1.0 4.168x10°1° 1.5419x10~%° 4.987x10°1° 1.0 4.168x10°1° —~8.19x107%° 4.98x1071°

Table3 Table 6

Comparison of OHAM and ADM for lift velocity when w = 0.2, « = 0.02,S;= 0.5, A = 2,
t=1,Q=1.

Comparison of OHAM and ADM for drainage velocity when w = 0.2, « = 0.02,
$=051=2,t=1,Q=1

X OHAM ADM Absolute error X OHAM ADM Absolute error
0.0 1.98007 1.98007 0 0.0 0.980067 0.980067 0

0.1 1.67058 1.66832 226x1073 0.1 0.81558 0.81332 2.26x1073
0.2 1.38576 1.38195 3.81x1073 0.2 0.66576 0.66195 3.81x1073
0.3 1.12565 1.12092 4.72x1073 0.3 0.53065 0.52592 4.72x1073
0.4 0.89028 0.88519 5.08x10~3 0.4 0.41028 0.40519 5.08x1073
0.5 0.679712 0.674745 496x1073 0.5 0.304712 0.29975 496%x1073
0.6 0.49397 0.48952 4.44x1073 0.6 0.21397 0.20952 444%x1073
0.7 0.33309 0.32947 3.61x103 0.7 0.13809 0.13447 3.61x1073
0.8 0.19712 0.19457 2.54x1073 0.8 0.07712 0.07457 2.54x1073
0.9 0.08607 0.08476 131x1073 0.9 0.03107 0.02976 1.31x1073
1.0 1.927x10718 1.311x10°18 6.167x1071° 1.0 1.927x10718 1.311x10°18 6.167x1071°
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Table 7
Lift velocity at various domain points at different time level when w = 0.2, « = 0.02,
Sp=11=2¢=009.

x=02 x=03 x=04 x=05

0 1.2798 1.01473 0.77969 0.57469

1 1.26354 0.999816 0.766395 0.563242
2 1.21924 0.960388 0.732109 0.534324
3 1.14866 0.898022 0.678203 0.489087
4 1.0546 0.815203 0.606828 0.429335
5 0.940831 0.715233 0.520828 0.35745

6 0.811877 0.602097 0.423633 0.276298
7 0.672882 0.480307 0.319117 0.189114
8 0.529386 0.354717 0.211447 0.0993746
9 0.387111 0.230335 0.104915 0.0106565
10 0.251729 0.112118 0.003768 —0.0735031

Table 8

Shows drainage velocity distribution of thin film layer at various domain points at
different time level.

t x=02 x=03 x=04 x=05

0 0.639799 0.524733 0.419696 0.32469

1 0.623544 0.509816 0.406395 0.313242
2 0.57924 0.470388 0.372109 0.284324
3 0.508655 0.408022 0.318203 0.239087
4 0.414602 0.325203 0.246828 0.179335
5 0.300831 0.225233 0.160828 0.10745
6 0.171877 0.112097 0.063633 0.026298
7 0.0328819 —0.009693 —0.040883 —0.060886
8 —0.110614 —0.135283 —0.148553 —0.150625
9 —0.252889 —0.259665 —0.255085 —0.239344
10 —0.388271 —0.37882 —0.356232 —0.323503

10. Conclusion

In this article, we have modeled the thin film flow of unsteady
second grade fluid over a vertical belt. The belt is oscillating and
translating for lift velocity distribution while belt is only oscillating
for drainage velocity distribution. The governing problems have
been solved analytically by ADM and OHAM. The comparison of
(ADM) and (OHAM) has been derived graphically and numerically.
Expression for velocity field has been derived and sketched. The
effects of various embedded flow parameters have been discussed.
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