
AUTOMATION SCRIPTS FOR GENERIC SYNTHESIS AND CO-SIMULATION

FOR XRONOS GENERATED HDLS.

KHALIL ASYRANI BIN SULAIMAN

UNIVERSITI TEKNOLOGI MALAYSIA

iv

AUTOMATION SCRIPTS FOR GENERIC SYNTHESIS AND CO-SIMULATION

FOR XRONOS GENERATED HDLS.

KHALIL ASYRANI BIN SULAIMAN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

2 JUNE 2016

iii

Specially dedicated to Mama, Abah and my beloved wife, Siti Aisyah.

I really miss all of you.

May Allah bless all of you always.

iv

ACKNOWLEDGEMENT

Firstly, I would like to give the greatest gratitude to Dr.Eileen Su Lee Ming

from Faculty of Electrical Engineer, Universiti Teknologi Malaysia for the guidance

in the past undergraduate which also continue motivating me to completing my

postgraduate project – “Automation Scripts for HDL Synthesis and Co-Simulation for

Better Optimization on Generated RVC Framework (ORCC) in HDL Tools”, as well

as Dr. Al-Hadi that giving me guide in using most of the tools such as Xilinx Vivado.

It would be impossible to complete without helps, advices and hospitality given by

them.

In addition, I would like to thanks to Chin Yong Huan and Khoo Zhi Yion for

helping me in providing walkthtough in HDL Tools. Apart from that, I also would like

to give my appreciation to all my friends, specifically Wan, Faiz and Syukri for

helping me in testing, giving idea, and feedbacks for this project.

Lastly, for the others that had helped me in this project which I did not mention,

their help is appreciated.

v

ABSTRACT

 With growing developments in applications such as multimedia, technologies

has pushed boundaries in the demands and popularity which used for a wide range of

application domains. However, as complexity of development process of these

applications that involve time-consuming and error-prone tasks increases, it is often

scaled-up with development of the devices on the market to supports these

applications. ORCC has helped in reducing the complexity of application

developments by providing a set of modern tools based on dataflow programming.

However, though Xronos generated HDLs has proven to be useful, yet it does not

optimized to the resource utilization, power and timing analysis. It also yet to have a

wide coverage across High-Level Synthesis (HLS) tools such as Altera Quartus and

Synopsys Design Compiler. These coverages include the codes generated can be

synthesize with other HDL tools. The critical part of this paper is generating of generic

HDL for Altera Quartus or Synopsys Design Compiler from original HDL generated

from ORCC and to provide co-simulation, automation environments for the RVC-

CAL framework of Altera Quartus’s testbench by extracting simulation data that

available from RVC-CAL framework, in which can be used to verify data from both

ends (RVC-CAL’s and Quartus’s). Apart from that, in order to fully test generated

code, comparison will be made with Xilinx Vivado HLS to benchmark functional test

that are made with different HLS tools. This paper present the automation scripts that

helps to produce better optimization of resource, power, and timing analysis from

Xronos generated HDLs and providing automatic testbench that can be tested with

Xilinx Vivado and other HDL tools.

vi

ABSTRAK

Sehubung dengan aliran perkembangan dalam aplikasi seperti multimedia, had

teknologi telah menembusi sempadan sama ada permintaan mahupun populariti yang

menggunakan pelbagai bentuk aplikasi untuk pelbagai domain. Walau bagaimanapun,

proses pembangunan aplikasi ini melibatkan masa dan sering kali banyak kesilapan

yang berlaku, pembangunan peranti ini selari dengan pasaran bagi menyokong

aplikasi ini untuk terus berkembang sekalipun ia rumit. ORCC membantu dalam

mengurangkan kerumitan dalam membangunkan aplikasi dengan menyediakan satu

set program yang menggunakan pengaturcaraan aliran data. Namun, walaupun

terbukti kod HDL yg terhasil dari Xronos berguna, tetapi ia tidak dioptimumkan untuk

sumber, tenaga dan kadar masa yang terdapat dalam sesebuah design. Selain itu, ia

juga tidak mempunyai liputan luas di dalam alat “High-Level Syntesis” (HLS) seperti

“Altera Quartus” dan “Synopsys Design Compiler” yang juga merangkumi kod yang

terjana dari “backend Verilog” dengan bantuan Xronos dan ORCC. Bahagian yang

penting dalam penyelidikan ini termasuk kaedah menghasilkan HDL generik untuk

“Altera Quartus” atau “Synopsys Design Compiler” dari HDL asal dijana daripada

ORCC dan untuk menyediakan ruang untuk automasi dan simulasi bagi merangka

semula RVC-CAL “testbench” untuk “Altera Quartus” dengan mengekstrak data

simulasi yang boleh didapati dari rangka kerja RVC-CAL, di mana boleh digunakan

untuk mengesahkan data dari kedua-dua arah (RVC-CAL dan Quartus ini). Selain itu,

untuk menguji sepenuhnya kod dijana, perbandingan akan dibuat dengan “Xilinx

Vivado HLS” untuk menguji fungsi yang diuji oleh alat HLS yang berbeza. Kertas

penyelidikan ini membentangkan skrip automasi yang mampu mengoptimum sumber,

tenaga dan kadar masa. Selain itu, skrip ini juga mampu menyediakan “testbench”

yang boleh disinthesis oleh Xilinx Vivado dan perisian HDL yang lain.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATION

LIST OF APPENDICES

ii

iii

iv

v

vi

vii

x

xi

xiii

xv

1 INTRODUCTION

1.1. Problem Background

1.2. Problem Statement

1.3. Research Objectives

1.4. Research Hypothesis

1.5. Research Scope

1

1

4

5

5

6

2 LITERATURE REVIEW

2.1. Theoritical Background

2.2.1. Orcc: Multimedia Development Made Easy

2.2.2. High-Level Dataflow Design

2.2.3. Power and Thermal Analysis

2.2.4. FPGAs vs ASICs

2.2. Related Works

7

7

7

8

9

10

12

viii

2.2.1. Improvements on HLS Debug and

 Validation on FPGA

2.2.2. New Solutions for System-Level and High

 Level Synthesis

2.2.3. Using Cluster-Based Logic Blocks and

 Timing-Driven Packing to Improve FPGA

 Speed and Density

2.2.4. Implementation of an FPGA-Based Low

 Power Video Processing

2.2.5. UVM Rapid Adoption

2.2.6. An Automatic Testbench Generation Tools

 for a SystemC Functional Verification

 Methodology

2.2.7. Automation Scripts for Generic Synthesis

 and Co-Simulation for Xronos Generated

 HDLs

12

15

17

18

20

21

22

3 RESEARCH METHODOLOGY

3.1. Introduction

3.2. Software

3.3. Design

3.3.1. Design Specification

3.4. Automation Flow

3.4.1. Automation Breakdown:

 Automation Phase 1

3.4.2. Automation Breakdown:

 Automation Phase 2

23

23

23

25

27

28

29

31

4 RESULT AND DISCUSSION

4.1. Introduction

4.2. Results and Findings

4.3. Results Verifications and Optimization Analysis

32

32

32

35

ix

5 PROJECT MANAGEMENTS

5.1. Introduction

5.2. Project Schedule

39

39

39

6 CONCLUSION

6.1. Introduction

6.2. Automation Scripts

6.3. Limitations

6.4. Recommendations

41

41

43

44

44

REFERENCES

Appendix A

Appendix B

45

49

52

x

LIST OF TABLES

TABLE NO. TITLE PAGE

1 Performance metric differences between FPGAs and

ASICs [4].

11

2 Resource utilization of pre and post automation

between two design.

37

3 Power analysis of pre and post automation of the design. 38

4 Timing analysis of pre and post automation of the

design

38

5 Project Gantt chart for first semester. 40

6 Project Gantt chart for second semester. 40

7 Overall improvements between pre and post automation

of the designs.

42

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.0 Basic design flow that describe involvement HLS in

Implementation.

1

2.0 Add to array Cal Actor relation. 8

2.1 Power basic power elements. 9

2.2 EOP insertion into AST. 13

2.3 Optimized framework proposed in previous work [20]. 16

2.4 CAD flow as proposed by the paper [23]. 17

2.5 Power dissipation and power savings (HBSM compared

to SBSM) for vary CPU’s clock frequencies.

19

2.6 Testbench to functional verification of the design. 21

3.0 Relationship of platform (Eclipse) that used to generate

the backends inputs for the automation scripts.

24

3.1 Add Array orginal input and output ports. 25

3.2 Add Array input and output ports changes. 25

3.3 JPEG Encoder original input port. 26

3.4 JPEG Encoder input port changes. 26

3.5 The main flow in this project 28

3.6 Automation Phase 1 (AP1) procedural breakdowns. 29

3.7 AP1 executed with ‘-help’ switches and example of

path is entered

30

3.8 Submodule & top module optimization breakdown. 30

3.9 AP2 procedural breakdowns. 31

4.0 Pre-Automation Add Array synthesized design

Schematic.

33

4.1 Post-Automation Add Array synthesized design 33

xii

Schematic.

4.2 Pre-Automation JPEG Encoder synthesized design

Schematic.

34

4.3 Post-Automation JPEG Encoder synthesized design

Schematic.

34

4.4 Pre-Automation Add Array simulation result. 35

4.5 Post-Automation Add Array simulation result. 35

4.6 Pre-Automation JPEG Encoder simulation result. 36

4.7 Post-Automation JPEG Encoder simulation result. 36

4.8 LUT and LUTRAM resources used for the designs. 37

4.9 BRAM and FF resources used for the designs. 37

5.0 IO’s used for the designs. 38

xiii

LIST OF ABBREVIATION

ASIC - Application-Specific Integrated Circuit

FPGA - Field-Programmable Gate Arrays

RTL - Register Transfer Level

FSM - Finite States Machine

SDK - Software Development Kits

HLS - High-Level Synthesis

NRE - Non-recurring Engineering

CAL - Cal Actor Language

RVC - Reconfigurable Video Coding

ORCC - Open RVC-CAL Compiler

EDA - Electronic Design Automation

AST - Abstract Syntax Tree

ESL - Electronic Design Level

LUT - Look-up Table

FF - Flip Flops

DSP - Digital Signal Processing

IOB - Input Output Blocks

GP - Genetic Programming

TCL - Tool Command Language

HDL - Hardware Description Language

EOP - Event Observability Ports

API - Application Programming Interface

QOR - Quality of Result

SBSM - Software-based Sleep Mode

HBSM - Hardware-based Sleep Mode

UVM - Universal Verification Methodology

xiv

DUV - Design under Verification

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A User Instruction and Manuals 49

B Important Code Fragments 52

INTRODUCTION

1.1 Problem Background

With growing complexity in circuit design, the needs to manage resources

within electronic circuit such available in FPGA which consisting of LUT, FF, DSP,

and IOB is becoming essential in maintaining design specification [1]. Recent

discoveries in late 1990’s with application-specific integrated circuits (ASICs)

indicate designer now can apply describe-and-synthesize methodology to certain level

of hardware abstraction [1]. The behavioral model of ASICs now can be describe with

register-transfer level (RTL) with algorithms, flow-charts, dataflow graphs or

generalize finite state machines (FSMs) in which every state can perform specific

complex computations that leads to synthesizable of ASICs at high-level synthesis

(HLS) technique [1].

Functional
Units

Behavioral
Representation

Behavioral
Modeling

RTL
algortithm

Functional
Units

Registers &
Memories

ALUs,
Multiplier

Figure 1.0 : Basic design flow that describe

involvement HLS in implementation

.

2

HLS can be describe as task that align in a sequence to transforms into a

behavioral representation of specified RTL design. From there, design can be break

down into functional units such as ALUs, multipliers, and storage units like memories

or register files [1]. All of this information can be summarize in the Figure 1.0 in which

already assisting designer to solve growing complexity and size of today’s design.

However, without tackling the verification as parts of the design cycle, it almost quite

hard to speed up the verification of the design process itself.

Automation or automatic program in HLS have already exist since 1990’s [2-

3]. Automation in HLS has become essential as growing complexity and time-to-

market pressure that already exist in today’s electronic digital systems business [3].

Although there is debate to resist the changes by moving to automatic behavioral

synthesis approach as it lack of interactivity and low-quality on the result, but in

previous work proves that the HLS tools that combined with genetic programming

(GP) can significantly improve the quality of the design as well as exploring the

potential of the design space [3]. Thus, HLS will continue evolve the potential in

improving the IC design to new level.

HLS tools already can implement advance automation of functional

verification by integrating the source code which function as the references and

generated design as the device under test into one testbench which can also be

generated together in the design. With further exposure of automation in the flow,

many optimization beside verification such as resource managements also can be fully

utilize to reduce power consumption [5]. Thus, by reducing the amount of power

consumed in a circuit, many possibility can be achieved such as reduction in total

system cost and prolong battery life for mobile-based devices [3].

3

Although field programmable gate arrays (FPGAs) provide many benefits over

ASICs such as reduced non-recurring engineering (NRE) and consume less time for

marketing. But, when implementation of design take place on FPGAs, it come with

cost for degrade performance, increase in silicon area, as well as power consumption

[4]. It is important to understand some application are constraints to certain power

specification and resource utilization [2]. Thus, ASICs is more reliable when

advocating design to specific or dedicate function and implementation.

An introduction to Open RVC CAL Compiler (ORCC) with improvements

from Xronos, has provided back-end support to generate from CAL languages, which

a form of HLS to obtain specifically Xronos-based Verilog HDL backends [6]. From

generated backends, although it is fully synthesizable to Xilinx Vivado’s compiler,

there are drawback of on generated backends, as the Verilog is not highly optimize

and contain bloated signals in which need further optimization to prevent wastage on

resources, power and timing degradation on synthesized design.

4

1.2 Problem Statement

Normally, the generated Xronos Verilog from the ORCC is not fully

optimizing the resources usage for synthesize the RTL into netlist, in which will be

describe in layout level. It is very important to have some modification to the

generated codes in which helps to improve the quality of design aspect such as power

consumed by the circuit during testing or simulation phase. Another feature that is not

available for other HDL tools is the testability on functional unit of the generated

block. The generated codes only provides testbench that can be used for Xilinx

Vivado’s TCL command window in which create less robustness to test this testbench

on other HDL tools. It is best to obtain a generic testbench that can synthesizable and

tested by other HDL tools.

Generic HDL description is very essential in today’s design in obtaining the

fully functional hardware description that synthesizable into the netlist which can be

use in testing or simulating the result across other platform of HDL tools. These

generic HDL description are such as System Verilog, Verilog or VHD. The limitation

of current tools to generate such robustness it is difficult to test the ASICs-based

synthesis to any FPGA-based HDL. Thus, the need of Cal Actor Language (CAL)

from RVC-CAL to be able generated into generic HDL is very critical in deliver the

significant benchmark ASICs hardware model into FPGA simulation such that several

modification need to perform in order to fully support other HDL tools besides Xilinx

Vivado.

5

1.3 Research Objectives

The objectives of this research focuses on three main issues derived from the problem

statement of this project;

1. To create automation that helps in optimize resource utilization by

more than 5% specifically at IO’s of generated HDL.

2. To obtain better resource, power, and timing analysis from generated

HDL.

3. To provide co-simulation automation environments for RVC-CAL

framework of Altera Quartus’s testbench.

4. To generate generic HDL for Altera Quartus II, Mentor Graphic

ModelSim or Synopsys Design Compiler from original HDL generated

from ORCC.

1.4 Research Hypothesis

These are hypothesis outlined is to proves the objectives that presented:

1. Generated HDL from ORCC now is better than 5% resource utilization

specifically at IO’s and has significant improvements in timing, and

power consumption.

2. Testbench can be generated for Altera Quartus’s testing and

simulation.

3. Generated HDL from ORCC can be port over across HDL tools for

synthesis, analysis and simulation

6

1.5 Research Scope

In order to fulfill the needs and specification of this developments automated

scripts, several scope are focused within this research or development. Firstly, as for

fundamental needs, few theoretical studies on Open RVC-CAL Compiler (ORCC) as

HLS that can produce backends for various application such C and Xronos Verilog

and how it can be synthesized to targeted HDL tools such Xilinx Vivado. Secondly,

this developments will use majorly Verilog HDL as baseline of hardware description

language. The automated scripts that will be written in either Tool Command

Language (TCL) or Perl to optimize the generated HDL from ORCC that uses the

Xronos Cal Actor Language (CAL) application such as AddArray and JPEG

Encoder.

The assessment will cover two phase. As for phase one, the identification of

the sub-block that are not synthesizable by Quartus II compiler or simulator,

followed by the optimization in which break down into top modules and sub

modules. The further description are stated in methodology section. Part two will

cover the development of scripts in generating testbench that synthesizable in HDL

tools. By taking top modules as references for the testbench structuring, the

automation involve is to get all the necessary information. The generated testbench

are also will be further describe in methodology section.

45

REFERENCES

1. Gajski, Daniel D., et al. High—Level Synthesis: Introduction to Chip and System

Design. Springer Science & Business Media, 2012.

2. Roman, Gruia-Catalin. "A taxonomy of current issues in requirements

engineering." Computer 18.4 (1985): 14-23.

3. Araújo, Sérgio G., et al. "Optimized datapath design by evolutionary

computation." System-on-Chip for Real-Time Applications, 2003. Proceedings.

The 3rd IEEE International Workshop on. IEEE, 2003.

4. Kuon, Ian, et al. "Measuring the gap between FPGAs and ASICs." Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on 26.2

(2007): 203-215.

5. Wipliez, Matthieu. Compilation infrastructure for dataflow programs. Diss. INSA

de Rennes, 2010.

6. Chavarrias, M., et al. "A multicore DSP HEVC decoder using an actor-based

dataflow model." Consumer Electronics (ICCE), 2015 IEEE International

Conference on. IEEE, 2015.

7. Yviquel, Hervé, et al. "Orcc: Multimedia development made easy."Proceedings of

the 21st ACM international conference on Multimedia. ACM, 2013.

8. Meeus, Wim, et al. "An overview of today’s high-level synthesis tools." Design

Automation for Embedded Systems 16.3 (2012): 31-51.

9. Bezati, Endri, et al. "High-level dataflow design of signal processing systems for

reconfigurable and multicore heterogeneous platforms." Journal of real-time

image processing 9.1 (2014): 251-262.

46

10. Monson, Joshua S., et al. "Using Source-Level Transformations to Improve High-

Level Synthesis Debug and Validation on FPGAs." Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

ACM, 2015.

11. Simpson, Philip. FPGA design. Springer, 2010.

12. McFarland, Michael C., et al. "The high-level synthesis of digital systems."

Proceedings of the IEEE 78.2 (1990): 301-318.

13. Zuo, Wei, et al. "New solutions for system-level and high-level synthesis."

Integrated Circuits (ISIC), 2014 14th International Symposium on. IEEE, 2014.

14. Hemmert, Karl S. Source Level Debugging of Circuits Synthesized from High

Level Language Descriptions. Diss. Brigham Young University, 2004.

15. Calagar, Nazanin, et al. "Source-level debugging for FPGA high-level synthesis."

Field Programmable Logic and Applications (FPL), 2014 24th International

Conference on. IEEE, 2014.

16. Goeders, Jeffrey, et al. "Effective fpga debug for high-level synthesis generated

circuits." Field Programmable Logic and Applications (FPL), 2014 24th

International Conference on. IEEE, 2014.

17. Curreri, John, Greg Stitt, et al. "High-level synthesis techniques for in-circuit

assertion-based verification." Parallel & Distributed Processing, Workshops and

Phd Forum (IPDPSW), 2010 IEEE International Symposium on. IEEE, 2010.

18. Ben Hammouda, Mohamed, et al. "A design approach to automatically synthesize

ansi-c assertions during high-level synthesis of hardware accelerators." Circuits

and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014.

19. Monson, Joshua S., et al. "New approaches for in-system debug of behaviorally-

synthesized FPGA circuits." Field Programmable Logic and Applications (FPL),

2014 24th International Conference on. IEEE, 2014.

47

20. Zuo, Wei, et al. "New solutions for system-level and high-level synthesis."

Integrated Circuits (ISIC), 2014 14th International Symposium on. IEEE, 2014.

21. Zuo, Wei, et al. "Improving high level synthesis optimization opportunity through

polyhedral transformations." Proceedings of the ACM/SIGDA international

symposium on Field programmable gate arrays. ACM, 2013.

22. Rose, Jonathan, et al. "Architecture of field-programmable gate

arrays." Proceedings of the IEEE81.7 (1993): 1013-1029.

23. Marquardt, et al. "Using cluster-based logic blocks and timing-driven packing to

improve FPGA speed and density." Proceedings of the 1999 ACM/SIGDA seventh

international symposium on Field programmable gate arrays. ACM, 1999.

24. Sentovich, Ellen M., et al. SIS: A system for sequential circuit analysis. Vol. 41.

Tech. Report No. UCB/ERL M92, 1992.

25. Cong, Jason, et al. "FlowMap: An optimal technology mapping algorithm for

delay optimization in lookup-table based FPGA designs."Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on 13.1 (1994): 1-12.

26. Betz, Vaughn. "Architecture and CAD for Speed and Area Optimization of

FPGAs." (1998).

27. Betz, Vaughn, et al. "VPR: A new packing, placement and routing tool for FPGA

research." Field-Programmable Logic and Applications. Springer Berlin

Heidelberg, 1997.

28. Betz, Vaughn, Jonathan Rose, et al. Architecture and CAD for deep-submicron

FPGAs. Vol. 497. Springer Science & Business Media, 2012.

29. Saldanha, Alexander. "Functional timing optimization." Proceedings of the 1999

IEEE/ACM international conference on Computer-aided design. IEEE Press,

1999.

48

30. Bsoul, Assem AM, et al. "Implementation of an FPGA-based low-power video

processing module for a head-mounted display system." Consumer Electronics

(ICCE), 2013 IEEE International Conference on. IEEE, 2013.

31. "Smart Eyewear and Smart Goggles for Sports | Recon Instruments." Recon

Instruments. Web. 30 May 2016.

32. Sengupta, Dipanjan, et al. "Low-power FPGA-based display processing module

for head-mounted displays." 2011 IEEE International Conference on Consumer

Electronics (ICCE). 2011.

33. Sutherland, Stuart, et al. "UVM Rapid Adoption: A Practical Subset of UVM."

34. Da Silva, Karina RG, et al. "An automatic testbench generation tool for a SystemC

functional verification methodology."Integrated Circuits and Systems Design,

2004. SBCCI 2004. 17th Symposium on. IEEE, 2004.

35. Rashinkar, Prakash, et al. System-on-a-chip verification: methodology and

techniques. Springer Science & Business Media, 2007.

36. Bergeron, Janick. Writing testbenches: functional verification of HDL models.

Springer Science & Business Media, 2012.

