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ABSTRACT 

 With growing developments in applications such as multimedia, technologies 

has pushed boundaries in the demands and popularity which used for a wide range of 

application domains. However, as complexity of development process of these 

applications that involve time-consuming and error-prone tasks increases, it is often 

scaled-up with development of the devices on the market to supports these 

applications. ORCC has helped in reducing the complexity of application 

developments by providing a set of modern tools based on dataflow programming. 

However, though Xronos generated HDLs has proven to be useful, yet it does not 

optimized to the resource  utilization, power and timing analysis. It also yet to have a 

wide coverage across High-Level Synthesis (HLS) tools such as Altera Quartus and 

Synopsys Design Compiler. These coverages include the codes generated can be 

synthesize with other HDL tools. The critical part of this paper is generating of generic 

HDL for Altera Quartus or Synopsys Design Compiler from original HDL generated 

from ORCC and to provide co-simulation, automation environments for the RVC-

CAL framework of Altera Quartus’s testbench by extracting simulation data that 

available from RVC-CAL framework, in which can be used to verify data from both 

ends (RVC-CAL’s and Quartus’s). Apart from that, in order to fully test generated 

code, comparison will be made with Xilinx Vivado HLS to benchmark functional test 

that are made with different HLS tools. This paper present the automation scripts that 

helps to produce better optimization of resource, power, and timing analysis from 

Xronos generated HDLs and providing automatic testbench that can be tested  with 

Xilinx Vivado and other HDL tools.
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ABSTRAK 

Sehubung dengan aliran perkembangan dalam aplikasi seperti multimedia, had 

teknologi telah menembusi sempadan sama ada permintaan mahupun populariti yang 

menggunakan pelbagai bentuk aplikasi untuk pelbagai domain. Walau bagaimanapun, 

proses pembangunan aplikasi ini melibatkan masa dan sering kali banyak kesilapan 

yang berlaku, pembangunan peranti ini selari dengan pasaran bagi menyokong 

aplikasi ini untuk terus berkembang sekalipun ia rumit. ORCC membantu dalam 

mengurangkan kerumitan dalam membangunkan aplikasi dengan menyediakan satu 

set program yang menggunakan pengaturcaraan aliran data. Namun, walaupun 

terbukti kod HDL yg terhasil dari Xronos berguna, tetapi ia tidak dioptimumkan untuk 

sumber, tenaga dan kadar masa yang terdapat dalam sesebuah design. Selain itu, ia 

juga tidak mempunyai liputan luas di dalam alat “High-Level Syntesis” (HLS) seperti 

“Altera Quartus” dan “Synopsys Design Compiler” yang juga merangkumi kod yang 

terjana dari “backend Verilog” dengan bantuan Xronos dan ORCC. Bahagian yang 

penting dalam penyelidikan ini termasuk kaedah menghasilkan HDL generik untuk 

“Altera Quartus” atau “Synopsys Design Compiler” dari HDL asal dijana daripada 

ORCC dan untuk menyediakan ruang untuk automasi dan simulasi bagi merangka 

semula RVC-CAL “testbench” untuk “Altera Quartus” dengan mengekstrak data 

simulasi yang boleh didapati dari rangka kerja RVC-CAL, di mana boleh digunakan 

untuk mengesahkan data dari kedua-dua arah (RVC-CAL dan Quartus ini). Selain itu, 

untuk menguji sepenuhnya kod dijana, perbandingan akan dibuat dengan “Xilinx 

Vivado HLS” untuk menguji fungsi yang diuji oleh alat HLS yang berbeza. Kertas 

penyelidikan ini membentangkan skrip automasi yang mampu mengoptimum sumber, 

tenaga dan kadar masa. Selain itu, skrip ini juga mampu menyediakan “testbench” 

yang boleh disinthesis oleh Xilinx Vivado dan perisian HDL yang lain. 
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INTRODUCTION 

1.1 Problem Background 

With growing complexity in circuit design, the needs to manage resources 

within electronic circuit such available in FPGA which consisting of LUT, FF, DSP, 

and IOB is becoming essential in maintaining design specification [1]. Recent 

discoveries in late 1990’s with application-specific integrated circuits (ASICs) 

indicate designer now can apply describe-and-synthesize methodology to certain level 

of hardware abstraction [1]. The behavioral model of ASICs now can be describe with 

register-transfer level (RTL) with algorithms, flow-charts, dataflow graphs or 

generalize finite state machines (FSMs) in which every state can perform specific 

complex computations that leads to synthesizable of ASICs at high-level synthesis 

(HLS) technique [1]. 
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Figure 1.0 : Basic design flow that describe 

involvement HLS in implementation 
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HLS can be describe as task that align in a sequence to transforms into a 

behavioral representation of specified RTL design. From there, design can be break 

down into functional units such as ALUs, multipliers, and storage units like memories 

or register files [1]. All of this information can be summarize in the Figure 1.0 in which 

already assisting designer to solve growing complexity and size of today’s design. 

However, without tackling the verification as parts of the design cycle, it almost quite 

hard to speed up the verification of the design process itself.  

 

Automation or automatic program in HLS have already exist since 1990’s [2-

3].  Automation in HLS has become essential as growing complexity and time-to-

market pressure that already exist in today’s electronic digital systems business [3]. 

Although there is debate to resist the changes by moving to automatic behavioral 

synthesis approach as it lack of interactivity and low-quality on the result, but in 

previous work proves that the HLS tools that combined with genetic programming 

(GP) can significantly improve the quality of the design as well as exploring the 

potential of the design space [3]. Thus, HLS will continue evolve the potential in 

improving the IC design to new level. 

 

HLS tools already can implement advance automation of functional 

verification by integrating the source code which function as the references and 

generated design as the device under test into one testbench which can also be 

generated together in the design. With further exposure of automation in the flow, 

many optimization beside verification such as resource managements also can be fully 

utilize to reduce power consumption [5]. Thus, by reducing the amount of power 

consumed in a circuit, many possibility can be achieved such as reduction in total 

system cost and prolong battery life for mobile-based devices [3]. 
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Although field programmable gate arrays (FPGAs) provide many benefits over 

ASICs such as reduced non-recurring engineering (NRE) and consume less time for 

marketing. But, when implementation of design take place on FPGAs, it come with 

cost for degrade performance, increase in silicon area, as well as power consumption 

[4]. It is important to understand some application are constraints to certain power 

specification and resource utilization [2]. Thus, ASICs is more reliable when 

advocating design to specific or dedicate function and implementation. 

 

An introduction to Open RVC CAL Compiler (ORCC) with improvements 

from Xronos, has provided back-end support to generate from CAL languages, which 

a form of HLS to obtain specifically Xronos-based Verilog HDL backends [6]. From 

generated backends, although it is fully synthesizable to Xilinx Vivado’s compiler, 

there are drawback of on generated backends, as the Verilog is not highly optimize 

and contain bloated signals in which need further optimization to prevent wastage on 

resources, power and timing degradation on synthesized design.  
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1.2 Problem Statement  

Normally, the generated Xronos Verilog from the ORCC is not fully 

optimizing the resources usage for synthesize the RTL into netlist, in which will be 

describe in layout level. It is very important to have some modification to the 

generated codes in which helps to improve the quality of design aspect such as power 

consumed by the circuit during testing or simulation phase. Another feature that is not 

available for other HDL tools is the testability on functional unit of the generated 

block. The generated codes only provides testbench that can be used for Xilinx 

Vivado’s TCL command window in which create less robustness to test this testbench 

on other HDL tools. It is best to obtain a generic testbench that can synthesizable and 

tested by other HDL tools. 

 

Generic HDL description is very essential in today’s design in obtaining the 

fully functional hardware description that synthesizable into the netlist which can be 

use in testing or simulating the result across other platform of HDL tools. These 

generic HDL description are such as System Verilog, Verilog or VHD. The limitation 

of current tools to generate such robustness it is difficult to test the ASICs-based 

synthesis to any FPGA-based HDL. Thus, the need of Cal Actor Language (CAL) 

from RVC-CAL to be able generated into generic HDL is very critical in deliver the 

significant benchmark ASICs hardware model into FPGA simulation such that several 

modification need to perform in order to fully support other HDL tools besides Xilinx 

Vivado. 
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1.3 Research Objectives 

The objectives of this research focuses on three main issues derived from the problem 

statement of this project; 

 

1. To create automation that helps in optimize resource utilization by 

more than 5% specifically at IO’s of generated HDL. 

2. To obtain better resource, power, and timing analysis from generated 

HDL.  

3. To provide co-simulation automation environments for RVC-CAL 

framework of Altera Quartus’s testbench. 

4. To generate generic HDL for Altera Quartus II, Mentor Graphic 

ModelSim or Synopsys Design Compiler from original HDL generated 

from ORCC. 

1.4 Research Hypothesis 

These are hypothesis outlined is to proves the objectives that presented: 

 

1. Generated HDL from ORCC now is better than 5% resource utilization 

specifically at IO’s and has significant improvements in timing, and 

power consumption. 

2. Testbench can be generated for Altera Quartus’s testing and 

simulation. 

3. Generated HDL from ORCC can be port over across HDL tools for 

synthesis, analysis and simulation 

  



6 

 

 

 

1.5 Research Scope 

In order to fulfill the needs and specification of this developments automated 

scripts, several scope are focused within this research or development. Firstly, as for 

fundamental needs, few theoretical studies on Open RVC-CAL Compiler (ORCC) as 

HLS that can produce backends for various application such C and Xronos Verilog 

and how it can be synthesized to targeted HDL tools such Xilinx Vivado. Secondly, 

this developments will use majorly Verilog HDL as baseline of hardware description 

language. The automated scripts that will be written in either Tool Command 

Language (TCL) or Perl to optimize the generated HDL from ORCC that uses the 

Xronos Cal Actor Language (CAL) application such as AddArray and JPEG 

Encoder. 

 

The assessment will cover two phase. As for phase one, the identification of 

the sub-block that are not synthesizable by Quartus II compiler or simulator, 

followed by the optimization in which break down into top modules and sub 

modules. The further description are stated in methodology section. Part two will 

cover the development of scripts in generating testbench that synthesizable in HDL 

tools. By taking top modules as references for the testbench structuring, the 

automation involve is to get all the necessary information. The generated testbench 

are also will be further describe in methodology section. 
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