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ABSTRACT 

 

 

Heat exchanger network (HEN) in the industries is very complex as it considers 

many problems and situations. Quantitative part such as cost of the heat exchanger and 

external utilities as well as the qualitative part such as safety, operability and flexibility 

are part of the design objective. This study presents a method for optimal HEN design 

which considers the inherent safety and operability aspects in the design. Data will be 

extracted for pinch study and safety assessment. The construction of continuous hot 

and cold Stream Temperature vs Enthalpy Plot (STEP) prioritized the inherent safety 

index than the heat capacity flowrate (FCp). The high ISI of hot and cold streams are 

matched together and vice versa. Thus, the focus of safety can centralized on a 

particular heat exchanger. The pinch temperature and minimum utility can be 

determined from STEP. The disturbance propagation path through the HEN and the 

affected streams are analysed. The modification of network by downstream path 

concept is performed in order to reduce the disturbance propagation path and affected 

streams. The ∆Tmin violation and energy penalty is determined due to the changes of 

network. The flexibility and the structural controllability of each of the alternative 

network are determined and compared. Highest percentage of changes in every streams 

of the network and index of structural controllability near to 1 indicates that network 

is the most flexible and controllable. The application of this method on Case Study 2 

shows alternative network 3 is the most flexible and controllable with 22% and 0.917 

respectively. 
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ABSTRAK 

 

 

Rangkaian penukar haba (HEN) di dalam industri adalah sangat kompleks 

kerana ia mempertimbangkan pelbagai masalah dan situasi. Bahagian kuantitatif 

seperti penukar haba dan kegunaan luaran serta bahagian kualitatif seperti 

keselamatan, kebolehkendalian dan fleksibiliti merupakan sebahagian daripada 

objektif reka bentuk. Kajian ini membentangkan kaedah untuk reka bentuk HEN yang 

optimal yang mempertimbangkan aspek-aspek keselamatan dan kebolehkendalian di 

dalam reka bentuk. Data akan diambil untuk kajian jepit dan penilaian keselamatan. 

Pembentukan aliran panas dan sejuk yang berterusan yang dipanggil Plot Aliran Suhu 

dan Entalpi (STEP) mengutamakan indeks keselamatan yang wujud daripada kadar 

aliran kapasiti haba (FCp).  ISI yang tinggi bagi aliran panas dan sejuk akan 

dipadankan bersama dan begitu juga sebaliknya. Oleh itu, fokus keselamatan boleh 

berpusat hanya pada penukar haba tertentu. Suhu jepit dan utiliti minimum boleh 

ditentukan daripada STEP. Laluan penyebaran gangguan menerusi HEN dan aliran 

yang terjejas akan dianalisis. Pengubahsuaian rangakaian boleh dilakukan dengan 

menggunakan konsep laluan aliran dibawah untuk mengurangkan laluan penyebaran 

gangguan dan aliran terjejas. Pelanggaran ∆Tmin dan penalti tenaga dikenalpasti kerana 

berlaku perubahan rangkaian. Fleksibiliti dan pengawalan struktur setiap rangakaian 

alternatif dikenalpasti dan dibandingkan. Perubahan aliran dalam setiap aliran sesuatu 

rangkaian yang mempunyai peratusan tertinggi dan indeks pengawalan struktur yang 

hampir dengan nilai 1 merupakan rangkaian yang paling fleksibel dan terkawal. 

Aplikasi kaedah ini terhadap Kes Kajian 2 menunjukkan rangakaian alternatif 3 adalah 

yang paling fleksibel dan terkawal dengan masing-masing bernilai 22% dan 0.917. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Heat exchanger network (HEN) is a key aspect of chemical process design 

(Linnhoff and Hindmarch, 1983). The improvement of HEN can save the energy about 

20-30% together with the capital saving. During the last two decades, a lot of 

researches on the development of HEN synthesis have been done especially on the 

development of heat recovery pinch method and utilization of maximum energy 

recovery, minimum area and unit targets and minimum global total cost. However, less 

consideration of operability and safety of HEN may lead to the undesired condition in 

a process such as the failure of heat exchanger. In most cases, the operating condition 

of heat exchanger network synthesis and design are assumed fixed at nominal 

conditions. Nevertheless, HEN in the industries is very complex as it considers many 

problems and situations. For instance, fouling, changes in feedstock, changes in 

specifications, catalyst deactivation, changes in product demand and varied seasonal 

operations (Shenoy, 1995). It is possible that these frequent changes create variations 

in the plant operation which are difficult to predict (Verheyen and Zhang, 2006).  The 
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deviation of the supply temperature and heat capacity flowrate from the nominal values 

is the most significant variations with high potential to occur (Tellez et al., 2006). 

 

 

Linnhoff and Flower (1978) have developed Pinch Analysis technique for 

maximum energy recover targeting and network integration. Setting energy target is 

the main point of Pinch Analysis in which the target is important for the energy 

reduction before a detailed design is conducted.  The application of Pinch Analysis in 

industries has been widely spread since then. Pinch Analysis is a systematic and 

holistic approach in improving the process stream and maximising heat recovery 

(Manan and Wan Alwi, 2006). The application of Pinch Analysis in industries gives 

some benefits as the process heating and cooling requirement can be minimised. Other 

than that, the number of heat exchanger, cooler and heater can also be minimised. Wan 

Alwi and Manan (2010) has proposed a new graphical method known as Stream 

Temperature vs. Enthalpy Plot (STEP) in order to overcome the limitations of 

composite curves (CC). At the same time, targeting and design of HEN can be 

ascertained from STEP as it is mapped on individual hot and cold streams using a 

shifted temperature versus enthalpy diagram. The Pinch point, maximum heat 

allocation (MHA) and energy target are simultaneously shown from STEP. MHA from 

the STEP diagram is then translated into Heat Allocation and Targeting (HEAT) 

diagram. Chan et al. (2014) has proposed STEP that considers inherent safety of heat 

exchanger network. Inherent safety is focusing in reducing hazard in the early phase 

design. The area of hazard in the heat exchanger network can be reduced by matching 

the unsafe hot and cold stream together. Furthermore, it is important to select a process 

network that will lead towards inherently safer design because the inherent safety of 

the whole design is affected by the choice of network selection.  

 

 

Operability of HEN refers to the ability of the network to remain in steady state 

even when some of the stream parameters such as inlet or outlet temperatures and heat 

capacity flowrates vary within the specified bound (Calandranis and Stephanopoulos, 

1988). The optimal HEN should not only exhibits the trade-off between the capital and 
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operating cost, but it also must have the operability characteristics that allow this 

economic performance to be achievable in practical operating environment 

(Glemmstad, 1997). Linnhoff and Kotjabasakis (1987) introduced the concept of 

downstream paths to identify the disturbance propagation path through the network 

which gives engineers much insight for the flexibility design. The modification of the 

network is done to reject the disturbances from the plant. 

 

 

On the other hand, in 1989, Huang and Fan (1989) has introduced a distributed 

strategy for integration of process design and control based on the principles of 

knowledge engineering. This method is able to generate an effective process with a 

high degree of structural controllability. It also can deal with different degrees of 

disturbance and various level of control precision. As it can develops a high degree of 

structural controllability network, thus, the repeated modification of the network can 

be prevented as well as simplified the design of process control system.  

 

  

The disturbances that propagate severely through HEN makes it difficult to be 

operated and uncontrollable. This problem gave the realisation and great attention in 

introducing the integrated process design and control (IPDC) (Seferlis and Georgiadis, 

2004). The IPDC and decomposition based solution strategy for HEN has been 

introduced by Abu Bakar et al. (2012). The IPDC formulation has the performance 

objective in terms of design, control and cost is optimised subject to a set of constraints.  

 

 

However, based on all the literatures, there are no work which integrates all the 

components of maximising energy recovery, safety, design and operability together 

for heat exchanger network design.  Hence this is the motivation of this research.  
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1.2 Problem Statement 

 

 

In an industry, the heat exchanger network is typically designed only based on 

maximising heat recovery potentials.  Safety element is only considered through 

HAZOP analysis after the design of network. It is possible for contamination, 

explosion, fouling and leakage of heat exchanger to occur in plant industries. Besides 

that, in most cases, the operating condition of heat exchanger network synthesis and 

design are assumed at steady state and non-variable. However in reality, changes and 

disturbances of operating condition may occur especially the supply temperature and 

heat capacity flowrate.  

 

 

Matching of heat exchangers without considering the streams chemical and 

physical properties may lead to high cost at the later stage of the design.  The 

consideration of safety elements of network selection at the early phase is more 

desirable in order to reduce the area of hazard and the need for extensive safety design 

in the later stage. In the meantime, a network with many connected heat exchangers 

within its path and split streams may also cause controllability problem.  Heat 

exchangers also need to be able to cater flexibility where when there are disturbance 

in the streams, the system can still delivers the heat requirement.  STEP method which 

can simultaneously target and design heat exchanger network has been extended to 

consider inherent safety by Chan et al (2014).  However, the method has not been 

extended to include operability issues mainly flexibility and controllability.  Following 

is the problem statement of this research: 

 

 

Given a set of hot streams that needs to be cooled down, a set of cold streams 

that needs to be heated up, it is desired to design a heat exchanger network which 

maximise the heat recovery potentials.  At the same time, the final network design 

should consider inherent safety and operability of the network.  In this work, a new 
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framework to design a heat exchanger network that maximise heat recovery, minimise 

material construction cost, flexible and with less operability problem is proposed by 

using the STEP method. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objective of this research is to develop a new framework for optimal 

heat exchanger network (HEN) design considering maximum energy recovery (MER), 

inherent safety and operability. 

Following are the sub-objectives: 

1) To determine the inherent safety index score of each streams involved. 

2) To determine the total number of streams affected in which a disturbance 

propagates through a heat exchanger network. 

3) To modify heat exchanger network and determine the flexibility and 

controllability to the disturbance.  

4) To compare and select the optimal  heat exchanger network design. 
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1.4 Scope of Study 

 

 

The scope of the study includes: 

1) State of the art review of inherent safety and operability in heat exchanger 

network (HEN). 

2) Developing a framework for designing a heat exchanger network considering 

heat recovery, inherent safety and operability based on STEP method. 

3) Designing the MER heat exchanger network based on inherent safety index 

score instead of heat capacity flowrate (FCp). 

4) Analysing the impact of operability disturbance on the heat exchanger network 

design through the downstream path concept. 

5) Developing a heat exchanger network design that is more flexible and 

structural controllable to the disturbances of the operating condition. 

6) Demonstrating the new framework with illustrative case study of a grassroots 

design.  

 

 

 

1.5 Significance of the Study 

 

The benefits of this study are: 

1) The consideration of inherent safety index score at the early stage of heat 

exchanger network can minimise the risk of contamination, accidents and 

explosion occurs in the industries. 

2) The modification of heat exchanger network allows the design of a less 

sensitive control structure with the minimisation of disturbance propagation 

path and affecting streams.  

3) The development of flexible and controllable heat exchanger network toward 

the variations in the operating conditions allows it to meet the design 

requirement at new operating condition. 
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