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ABSTRACT  
 

Since 1970s item response theory became the dominant area for study by measurement 
specialist in education industry. The common models and procedures for constructing test 
and interpreting test scores served the measurement specialist and other test users well for a 
long time. In this paper, a number of assumptions about the classical test theory are 
discussed. In addition, the contemporary test theory that is item response theory (IRT) will be 
discussed in general. There are four strong assumptions about the probability theory of item 
response theory such as the dimensionality of the latent space, local independence theory, 
the item characteristics curves and the speededness of the test. Furthermore, this discussion 
aimed to assist departments of education in considering the IRT that contributed in 
introducing the use of computerized adaptive testing (CAT) as they move to transition testing 
programs to online in the future.  
 
Keywords: Item Response Theory; Latent Trait; Classical Test Theory; Computerized 
Adaptive Testing; Probability Theory.  
 
INTRODUCTION 
Educational assessment is very important in education process compared to the evaluation 
and judgment. Currently, the scenario of the education in Malaysia is emphasized on how the 
students and teachers can help each other to improve the ability and performance rather than 
the achievement in examination. According to Bloom in Payne (2003), assessment is an 
analysis process in individual life towards the criterion and the environment that related to the 
individual lives. It is included on how the individual face with all the stresses, problems and 
crisis using his / her own abilities and strengths. Therefore, the standardized test must be 
designed effectively to measure student’s achievement. 
 
One of the solutions in constructing good test that can measure the ability precisely is by 
using the item response theory (IRT) in building up the test. IRT models are mathematical 
functions that specify the probability of a discrete outcome, such as a correct response to an 
item, in terms of person and item parameter.  Person parameters may represent the ability of 
a student or the strength of a person's attitude. Items may be questions that have incorrect 
and correct responses or statements on questionnaires that allow respondents to indicate 
level of agreement. 
 
Before a user tends to use the IRT, he or she has to assure that the dataset met the 
assumptions of IRT to ensure that they choose the correct model. If not the model is 
considerably poor and ultimately questionable. In this paper, we will discuss four assumptions 
of item response models that are 1) the dimensionality of the latent space, 2) local 
independence, 3) the item characteristic curves, and 4) the speededness of a test which 
promote for better understanding on IRT models.  
 
DIMENSIONALITY OF THE LATENT SPACE 
The dimensionality of item response models is defined on how many abilities were tested to 
the examinees in a test. The examinee’s ability is called examinee’s latent traits due to its 
unobservable value. If item response models assume only a single ability or a homogeneous 
set of item to be tested then the dimension of items in a test are referred as unidimensional 
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such as might be found on vocabulary test. Certainly, there are a lot of factors that can affect 
examinee’s performance such as their cognitive level, personality, level of examinee’s 
motivation, ability to work quickly, knowledge of the correct use of answer tools, etc. These 
dominant factors are referred to as the abilities measured by the test [1]. For each test, the 
unidimensionality assumption should be checked so that the administered test measures the 
same trait at each time. Moreover, if an examinee’s performance was tested by more than 
one latent variable then the IRT is referred to as multidimensional models (MIRT). So, it is 
assumed that there are k latent traits which define a k-dimensional latent space, and the 
examinee’s position for each trait is determined by its location in the latent space. For 
example, a test consists of both biology and chemistry items are probably not sufficient to be 
considered as homogeneous IRT.  
 
The placement of the examinee and the locations of the item are linearly related in measuring 
the examinee’s performance. The illustration of this generic relationship has been shown by 
Boeck and Wilson (2004) as in Figure 1. 
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Figure 1: A generic illustration student-ability flow 

 
Let say we have a test with n items was administered for a population of examinees. There 
are r subpopulation of examinees and the ability or latent traits is denoted as θr. The linear 
relationship between the performance of the examinee and the ability can be shown in the 
regression line as in Figure 2. At each ability level, the distribution of the test scores is 
conditional distribution to an ability level. If we have three groups of examinees (A,B and C), 
the unidimensionality of the test shows that the conditional distributions of the test score for 
these three groups would be equal. Contrary, at a given ability, if the test gives the 
examinees’ performance differently then the test is said to be multidimensional. The 
relationship between the performance of the examinee and the ability of multidimensional test 
can be shown in the regression line as in Figure 3. 
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Figure 2: Unidimensional of conditional distribution of test scores at three ability levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3: Multidimensional of conditional distribution of test scores at three ability levels 
 
 
In computer adaptive test (CAT), the dimensionality of the test is significantly important. A 
CAT requires the examinee to response to a selected test items rather than to a standard test 
form. If the item pool consists of unidimensional items, then a CAT is set to a parallel test in 
random that promotes for equivalent measurement (Wainer, 1990, p. 211). This assumption 
affects the construct validity of a test. This assumption has to be checked to ensure that the 
constructed item for a test item pool measure a single latent trait. To check this, Hambleton 
and Swaminathan have recommended using the Kuder-Richardson Formula 20 (KR-20) to 
address the dimensionality of a set of test items. The KR-20 should be used if we know the 
test length and the heterogeneity of the examinee. In addition, they said that the 
unidimensionality of a set of test item can be checked using tetrachoric correlation or phi 
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correlation in factor analysis. However, these checking procedures required complex 
formulation with some numerical integration and the decision about the eigenvalues of the 
interitem tetrachoric correlation matrix somewhat difficult to determine (Ackerman, 1996; 
Hambleton & Swaminathan, 1985, and Boeck & Wilson, 2004).  
 
LOCAL INDEPENDENCE 
In applying the IRT models, the so-called of local independence assumption is one of the 
important features. This assumption meaning that for every examinee’s response 

1or0=piy (where 0 denotes an incorrect response and 1 denotes a correct response) to 
the items i are statistically independent. In other words, the examinee’s performance on one 
item does not influenced by the correctness of answering the other items. When the IRT 
models met this assumption, the probability of that examinees of ability θ  correctly answer 
item 1 and item 2 equals to the product of the probability of correctly answering item 1 and the 
probability of correctly answering item 2 that is: 
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generally the assumption of local independence implies the joint distribution as in  Equation 
[1]  
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where ( ) ( )ii PQ θθ −= 1 . For example the probability of the dichotomous response of 

( )11010=piy  is equal to 54321 PPQPQ ⋅⋅⋅⋅  where iP  is the probability of the correct 

response and ii PQ −= 1  is the probability of incorrect response. Consider that if the 

examinee of ability 5.1=θ  have a 0.30 probability of answering item 1 correctly and a 0.50 
probability of answering item 2 correctly, under local independence assumption the probability 
of the examinee answering both item correctly is ( ) 15.050.030.0 = .  
 
Note that not all cases hold the requirement of local independence. For instance, in the case 
where some examinees may have higher expected test score than other examinees with 
respect to the same ability (Hambleton & Swaminathan, 1985) and if the test item is long and 
the examinees learn while answering items. Accordingly, the items associated with one 
stimulus are likely to be more related to one another than to items associated with another 
stimulus (Kolen & Brennan, 2004). For example, when test are compose of sets of items that 
are based on common stimuli, such as items on reading passages or diagrams, then 
Equation [1] is unlikely to hold. The violated relationship between the assumption of local 
independence and of the unidimensionality, however, for both might hold closely enough for 
IRT to be used in many practical situations such as in CAT. If unidimensionality is met, then 
the local independence assumption is also usually met (Hambleton et al., 1991). However, 
local independence can be met even when the unidimensionality assumption is not 
(Scherbaum et. Al. 2006, Kolen & Brennan 2004). 
 
 

[1] 
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ITEM CHARACTERISTIC CURVES 
The item characteristic curves (or ICC – they are also referred to as the item response 
function; IRF, or item characteristics function or trace lines) show the connection between the 
means of the conditional probability as in Equation [1] with the regression of the item score on 
ability. The frequency of test scores of examinees of fixed ability is given by 

      ( ) [ ] [ ]∑ ∏
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[2] 
where x is an examinee’s test score and [ ]nx ,0∈ . The ICC for item i denoted by ( )θiP  as 

the probability of an examinee answering item i correctly with abilityθ . For example, 35% of 
the examinees with ability 5.1=θ are expected to answer item 1 correctly with the probability 
is ( ) 35.05.11 =P .  
 
There are no fixed mathematical function of ICC. If we considered only one latent ability, then 
the regression is referred to as an ICC. Otherwise such as in multidimensional models, the 
regression has been referred to as the item characteristic function. This can be explained by 
the conditional distribution as in Equation [1] is identical across different populations, so that 
IRT models typically assume a specified functional form for the item characteristic curves.  
 
Universally, there are three mathematical models for the ICC to illustrate the relation of the 
probability of correct response to ability. Each model represents one or more parameters and 
the standard form of the model of the ICC is the cumulative form of the logistic function. First 
model are known as 1-PL or one-parameter logistic model and also known as Rasch Model 
that is given by 
 

                                                            ( ) ( )ii bi e
P −−+

= θθ
1

1
                                                           

[3] 
 
where e is the constant 2.718, and  bi is the item difficulty parameter for item i. In other words, 
we can say that the proportion of items that a particular examinee with ability θ  can answer 
item i correctly is given by Equation [3]. Figure 4(a) shows the “S” shaped of 1-PL model for 
three different levels of difficulty. The higher the value of ib , the probability of correct 

responses increases as well. The typical values of ib have the range 33 +≤≤− b  (Baker, 
2001).   
 
In application of IRT 1-PL model does not get a good fit to the data since the items are not 
always parallel (Wainer & Mislevy, 1990). Therefore, there are alternative models should be 
used to encounter this problem. We can either delete items that the curves show the slopes 
that are divergent or generalize the model to allow different slopes. In the two-parameter 
logistic model, ICCs vary in both slope and difficulty (some items are more difficult than 
others). In this model, there is additional parameter for each item. This parameter denoted as 
a and is often called as the item’s discrimination. The 2-PL is  
 

                                                          ( ) ( )ii bai e
P

−−+
= θθ

1
1

                                                          

[4] 
 
where ia is the discrimination level of item i . The usual range of a seen in practice is 

80.280.2 +≤≤− a  (Baker, 2001). To illustrate how the two-parameter model is used to 
compute the points on an ICC, consider the following example problem.  
 
Let say 5.0,0.1 == ab , the ability 0.3=θ , and the logit of Equation [4] is as follows 
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substitute 5.0,0.1 == ab , the ability 0.3=θ  into Equation [5] as follows 
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Thus at an ability level of 3.0, the probability of answering correctly to this item is 0.7311. 
Table 1 shows the calculation of ( )θiP  for this item at seven ability level that ranges from 
+3.0 to -3.0. Figure 4(b) shows the typical ICC for the 2-PL model for the same difficulty 
levels. 
 

Table 1: Item characteristic curve calculations under a two-parameter model, 
5.0,0.1 == ab  

Ability, θ  L ( )θiP  

3 1 0.7311 
2 0.5 0.6225 
1 0 0.5000 
0 -0.5 0.3775
-1 -1 0.2689 
-2 -1.5 0.1824 
-3 -2 0.1192 

 
In general ability test, placement test or any types of test the multiple-choice item remains 
popular and therefore the facts in testing that the examinees will get item correct by guessing 
is possible. Neither 1-PL nor 2-PL models took the guessing phenomenon into consideration. 
It is possible that the examinees will guess the answer for difficult item correctly or he or she 
answered using skill or knowledge based other than the one we thought we were testing. This 
phenomenon can be corrected by modified the 2-PL models to include a parameter that 
represents the contribution of guessing to the probability of correct response. This 
modification has been first recommended by Allan Birnbaum in 1968 (Baker, 2001, Wainer & 
Mislevy, 1990). It adds a third parameter, c, that is a binomial form of the guessing parameter. 
This modified model called the three-parameter model or 3-PL models is shown in Equation 
[6] as follows 
 

                                              ( ) ( ) ( )ii baiii e
ccP

−−+
−+= θθ

1
11                                                   

[6] 
 
where ci is the guessing parameter for item i or also known as the probability of  getting the 
item i correctly by guessing alone. The range for ci between zero and 1 but the practical value 
is 35.00 ≤≤ ic . Table 2 shows the calculation of  in 3-PL models. The corresponding item 
characteristic curve is shown in Figure 4(c).  

 

[5] 
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Table 2: Item characteristic curve calculations under a three-parameter model, 
 

25.0and3.1,5.1 === cab  

Ability, θ  L ( )θiP  

3 1.95 0.9066 
2 0.65 0.7428 
1 -0.65 0.5072 
0 -1.95 0.3434 
-1 -3.25 0.2780 
-2 -4.55 0.2578 
-3 -5.85 0.2522 

 
It is common for IRT user to define the item response function before beginning their work.  
The 3-PL is the IRT model that is most commonly applied in large-scale testing applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: (a) Typical item characteristic curves for 1-PL models at three levels of difficulty; (b) 
typical item characteristic curves for 2-PL models; and (c) typical item characteristic curves for 

3-PL models 
 

SPEEDEDNESS OF THE TEST 
Not many IRT users give their attention on the speediness of the test that may influence the 
examinee’s performance. The failure of examinees to complete the test in the given time limit 
so that this factor does not contaminate ability scores estimates (Hambleton & Swaminathan, 
1985). When speed becomes one of the factors, then in the IRT models are consists of at lest 
two traits affecting the examinees’ performance: the latent traits and the time limit. The 
speediness of the test can be checked by identifying the number of examinees who fail to 
finish a set of test and the number of items they fail to complete. Donlon (1978) (in Hambleton 
& Swaminathan, 1985) provided the estimate of correlation between scores obtained under 
power and speed conditions for identifying the speediness of tests as follows 
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and if we have administered parallel form of the test, then the speediness of the test can be 
computed using the speediness index as follows 
 

( )2Speediness Index 1 ,ρ= − s pT T  

 
Oshima (1994) discussed three factors to be considered in relation to speediness: proportion 
of the test not reached 5%, 10%, and 15%, response to not reached “blank and random 
response”, and item ordering from random to easy and hard. He found that ability estimation 
was least affected by the speededness of the test in terms of correlation between true and 
estimated ability parameters.  
 
APPLICATION OF ITEM RESPONSE THEORY 
IRT is the body of the development of modern psychometric fields. The theory and technique 
of IRT for examining psychometric properties of measures are much more complex than the 
classical methods. However, there are a lot of advantages when applying the IRT against the 
classical test theory. IRT models are particularly important and as the foundation for adaptive 
testing (mainly in computerized adaptive testing, CAT). When a test has been administered 
via the computer, the computer can update the items selection due to the present examinee’s 
performance at an ability. To match test items to the ability levels requires a large pool of 
items. With the right item bank and a high examinee ability variance, CAT can be much more 
efficient than a traditional paper-and-pencil test (P&P).  In adaptive testing, the strategy for 
selection of item from items pool follows the following decision rules:If an examinee answer 
an item correctly, the next item should be more difficult. If an examinee answer incorrectly, 
then next item should be easier. 
 
There are many advantages of applying IRT in computerized adaptive testing such as: 
 

i. When the assumptions of the IRT models are actually met, IRT provides 
correspondingly stronger findings due to invariant parameters estimation. In 
contrast, the classical test theory estimates the parameters such as the item 
difficulty, item discrimination, and reliability in a specific way. The error scores are 
also assumed to be constant. 

ii. IRT provides several improvements in scaling items and people  
iii. The parameters of IRT models are generally not sample- or test-dependent. 

Thus, IRT provides significantly greater flexibility in situations where different 
samples or test forms are used.  

iv. Items in adaptive testing of IRT models are chosen on present of examinee’s 
ability. Therefore, the raw score is based on a weighted sum of the item 
responses. Contrary, in P&P, responses are equally weighted.  

v. Test administered on computer will give different experience for examinees than 
taking a P&P test. Some of these differences are ease of reading passage or 
reviewing and changing answers, the effects of time limits, clearness of figures or 
diagrams and responding on a keyboard vs. responding on an answer sheet.  

 
SUMMARY 
IRT models are now an established approach of development of many testing method in 
educational measurement and evaluation. The purpose of this writing is to provide an 
introductory discussion of the main assumption, which has to be met, of many item response 
models. IRT models have been widely used due to its efficiency (fewer administered items) 
and control of correctness when given adequate items, every person can be measured with 
the same degree of correctness. 
 
It is our belief that these techniques will lead to a greater understanding of the testing and 
measurement in education. As in our National Education Blueprint 2006-2010, the 
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government enhancing the alternatives assessment methods that endorse for better learning 
environment among students. Therefore, the contributions of IRT models should be consider 
among psychometricians and we have, seriously, to start talking (and applying) IRT models in 
our assessment system.  
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