A Metric Discrepancy Estimate for A Real Sequence

Hailiza Kamarul Haili
School of Mathematical Sciences, University Science of Malaysia, 11800 Minden, Penang, Malaysia e-mail: hailiza@cs.usm.my

Abstract

A general metrical result of discrepancy estimate related to uniform distribution is proved in this paper. It has been proven by J.W.S Cassel and P.Erdos \& Koksma in [2] under a general hypothesis of $\left(g_{n}(x)\right)_{n=1}^{\infty}$ that for every $\varepsilon>0$, $$
D(N, x)=O\left(N^{\frac{-1}{2}}(\log N)^{\frac{5}{2}+\varepsilon}\right)
$$ for almost all x with respect to Lebesgue measure. This discrepancy estimate was improved by R.C. Baker [5] who showed that the exponent $\frac{5}{2}+\varepsilon$ can be reduced to $\frac{3}{2}+\varepsilon$ in a special case where $g_{n}(x)=a_{n} x$ for a sequence of integers $\left(a_{n}\right)_{n=1}^{\infty}$. This paper extends this result to the case where the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ can be assumed to be real. The lighter version of this theorem is also shown in this paper.

Keywords Discrepancy, uniform distribution, Lebesgue measure, almost everywhere

1 Introduction

The idea of this paper originated from the notion of the uniformly distributed sequences. To differentiate between a good and a bad uniform distribution of a sequence, we need to have a quantitative measure, a discrepancy. A discrepancy of a sequence measures how much a given sequence deviate from an ideal sequence, where it gives us a picture on how good or bad the sequence is distributed. In this paper, we present a result on discrepancy estimate for a real sequence, which is described below. The culmination of this paper is shown in theorem 1. This paper is organized as follows. First we will show the proof of Theorem 1 in section 2 and proof of Theorem 2 in section 3.

Let $\left(\lambda_{n}\right)_{n \geq 0}$ be a sequence of real numbers and there exist $\delta>0$ such that $\left|\lambda_{n+1}-\lambda_{n}\right| \geq \delta$. Also let

$$
D(N, x)=D\left(\left\{\lambda_{1} x\right\}, \ldots,\left\{\lambda_{N} x\right\}\right) \quad(n=1,2, \ldots)
$$

be the discrepancy of the sequence $\left(\lambda_{n} x\right)_{n=1}^{\infty}$, and $\left\{\lambda_{n} x\right\}$ denotes the fractional part of $\lambda_{n} x$. It has been proven in [3] that for almost real numbers x with respect to Lebesgue measure $\left(\lambda_{n} x\right)_{n=1}^{\infty}$ is uniformly distributed.
Theorem 1 Given $\varepsilon>0$,

$$
D(N, x)=o\left(N^{-\frac{1}{2}}(\log N)^{\frac{3}{2}+\varepsilon}\right) \quad \text { a.e (almost everywhere). }
$$

In the case for dimension $d=1$, Theorem 1 is due to R.C.Baker [5]. His proof hinges on maximal inequality for partial sums of Fourier series, due to L. Carleson and Hunt, used in
the proof of their celebrated theorem that if $c>1$ and $f \in L^{c}([0,1))$, then the partial sums of the Fourier series of f converge almost everywhere in $[0,1]$, with respect to Lebesgue measure. This maximal inequality has a generalization to higher dimensions due to P.Sjolin [4], which allows R.Nair [7] to extend Baker's theorem to the case where $d>1$, but still for only limited type of sequence which only consume the integers. Theorem 2, in the case for $d=1$, appears in [6] but with the exponent $3 \frac{1}{2}+\varepsilon$ instead of $\frac{5}{2}+\varepsilon$ as what we have.

2 Proof of Theorem 1

To prove the theorem, we need the following lemmas.
Lemma 1 [4]: For a set of real numbers x_{1}, \ldots, x_{N}, there exists $C>0$ such that for all natural numbers L,

$$
N D\left(x_{1}, \ldots, x_{N}\right) \leq C\left(\frac{N}{L}+\sum_{h=1}^{L} \frac{1}{h}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i h x_{n}}\right|\right)
$$

Lemma 2 [5]: Suppose we are given $\delta>0$, real numbers $\left(\lambda_{n}\right)_{n=1}^{N}$ such that $\lambda_{n+1}-\lambda_{n} \geq$ $\delta>0$, real numbers T and T_{0} with $T>0$ and complex numbers $\left(a_{n}\right)_{n=1}^{N}$. Then there exists $C>0$ such that

$$
\int_{T_{0}}^{T_{0}+T}\left\{\max _{1 \leq v \leq N}\left|\sum_{n=1}^{v} a_{n} e^{i \lambda_{n} t}\right|^{2}\right\} d t \leq C\left(T+2 \pi \delta^{-1}\right) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

Lemma 3 (Borel-Cantelli) : Let μ be a measure on a set X, with σ - algebra F, and let $\left(A_{n}\right)$ be a sequence in F. If

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

then $\mu\left(\lim \sup A_{n}\right)=0$.
Plainly in proving Theorem 1, we may without loss of generality assume x belongs to some finite interval. Now let

$$
\|f\| \text { denotes }\left(\int_{0}^{1}|f|^{2} d x\right)^{\frac{1}{2}}
$$

Then putting $x_{n}=\lambda_{n} x$, using Lemma 1 in light of Minskowski‘s inequality, there exists $C>0$ such that

$$
\left\|\max _{1 \leq v \leq N} v D(v, x)\right\| \leq C\left(\frac{N}{L}+\sum_{h=1}^{L} \frac{1}{h}\left\|\max \left|\sum_{\substack{n=1 \\ 1 \leq v \leq N}}^{v} e^{2 \pi i h \lambda_{n} x}\right|\right\|\right)
$$

which in light of Lemma 2 is

$$
\leq C_{2}\left(\frac{N}{L}+\sum_{h=1}^{L} \frac{1}{h} N^{\frac{1}{2}}\right)
$$

which choosing $L=N$ is

$$
\begin{equation*}
\left\|\max _{1 \leq v \leq N} D(v, x)\right\| \leq C_{2} N^{\frac{1}{2}}(\log N) \tag{}
\end{equation*}
$$

To deduce Theorem 1 let

$$
E(\varepsilon)=\left\{x \in\left[T_{0}, T_{0}+T\right]: \limsup _{l \rightarrow \infty} \frac{l D(l, x)}{f(l, \varepsilon)}>0\right\}
$$

where for integers $N \geq 1$ and $\varepsilon>0$,

$$
f(N, \varepsilon)=N^{\frac{1}{2}}(\log N)^{\frac{3}{2}+\varepsilon}
$$

We need to show that the Lebesgue measure $|E(\varepsilon)|$ of $E(\varepsilon)$ is zero for all $\varepsilon>0$.
Note that

$$
E(\varepsilon) \subseteq \bigcap_{r=1}^{\infty} \bigcup_{s=r}^{\infty} A_{s}(\varepsilon)
$$

where, for a particular fixed positive constant $K>0$,

$$
A_{s}(\varepsilon)=\left\{x \in\left[T_{0}, T_{0}+T\right]: \max _{1 \leq l \leq 4^{s}} l D(l, x)>K^{-1} f\left(4^{s}, \frac{\varepsilon}{2}\right)\right\}
$$

This is because if $x \in E(\varepsilon)$ there exist arbitrarily large positive integer s such that for each integer l in $\left[4^{s-1}, 4^{s}\right)$ there is a real number $K>0$, such that

$$
l D(l, x) \geq f\left(4^{s-1}, \frac{\varepsilon}{2}\right)>K^{-1} f\left(4^{s}, \frac{\varepsilon}{2}\right)
$$

In particular,

$$
\max _{1 \leq l<4^{s}}|l D(l, x)|>K^{-1} f\left(4^{s}, \frac{\varepsilon}{2}\right)
$$

so $x \in E(\varepsilon)$ as required. From $\left({ }^{*}\right)$, there exist $C_{2}>0$ such that

$$
\left|A_{s}(\varepsilon)\right|\left(f\left(4^{s}, \frac{\varepsilon}{2}\right)\right)^{2} \leq C_{2} 4^{s}\left(\log 4^{s}\right)^{2}
$$

Hence, there exists $C_{2}>0$ such that

$$
\left|A_{s}(\varepsilon)\right| \leq \frac{C_{2}}{s^{1+\varepsilon}}
$$

and

$$
\sum_{s=1}^{\infty}\left|A_{s}(\varepsilon)\right|<\infty
$$

so by the Borel-Cantelli Lemma, Theorem 1 is proved.
As an application to the result obtained in Theorem 1, we have the following theorem, a lighter version of Theorem 1. The result in Theorem 2 is the improvement of R.C Baker's result.
Theorem 2 Let $\left(R_{k}\right)_{k=1}^{\infty}$ be a collection of disjoint subintervals of $[0,1)$ such that

$$
\left|R_{k}\right|=O\left(a^{-k}\right)
$$

for some $a>1$, let

$$
B=\bigcup_{k=1}^{\infty} R_{k}
$$

Then given $\varepsilon>0$, there exists $N_{o}=N_{o}(x, \varepsilon)$ such that if $N>N_{o}$

$$
\left|\frac{1}{N} \sum_{n=1} \chi_{B}\left(\left\{\lambda_{n} x\right\}\right)-|B|\right|<N^{\frac{-1}{2}}(\log N)^{\frac{5}{2}+\varepsilon} \quad \text { a.e. }
$$

3 Proof of Theorem 2

$$
\text { For } z(N)=\log _{a} N \quad(N=1,2, \ldots) \text {, }
$$

Let

$$
t(N)=\bigcup_{1 \leq k \leq z(N)} R_{k} \quad(N=1,2, \ldots)
$$

and

$$
s(N)=\bigcup_{k>z(N)} R_{k} \quad(N=1,2, \ldots)
$$

Note that for $S \subseteq[0,1)$, we set

$$
K(S, N, x)=\frac{1}{N} \sum_{n=1} \chi_{s}\left(\left\{\lambda_{n} x\right\}\right)-|S| .
$$

Then for each $l=1,2, \ldots$, the disjoinness of the R_{k} implies that

$$
K(B, l, x)=K(t(N), l, x)+K(s(N), l, x) .
$$

Hence,

$$
\left\|\max _{1 \leq l \leq N}|K(B, l, x)|\right\| \leq\left\|\max _{1 \leq l \leq N}|K(t(N), l, x)|\right\|+\left\|\max _{1 \leq l \leq N}|K(s(N), l, x)|\right\|
$$

Note that by the disjointness of the R_{k},

$$
K(t(N), l, x)=\sum_{1 \leq k \leq z(N)} \frac{1}{l}\left(\sum_{j=1}^{l} \chi_{R_{k}}\left(\left\{\lambda_{j} x\right\}\right)-l\left|R_{k}\right|\right) .
$$

Hence,

$$
\begin{aligned}
\left\|\max _{1 \leq l \leq N}|K(t(N), l, x)|\right\| & =\left\|\max _{1 \leq l \leq z(N)}\left|\sum_{1 \leq l \leq z(N)} \frac{1}{l}\left(\sum_{j=1} \chi_{R_{k}}\left(\left\{\lambda_{R_{k}} x\right\}\right)-l\left|R_{k}\right|\right)\right|\right\| \\
& \leq \sum_{1 \leq l \leq z(N)}\left\|\max _{1 \leq l \leq N} l D(l, x)\right\| \\
& =z(N)\left\|\max _{1 \leq l \leq N} l D(l, x)\right\|
\end{aligned}
$$

so

$$
\left\|\max _{1 \leq l \leq N}|K(t(N), l, x)|\right\| \leq z(N)\left\|\max _{1 \leq l \leq N} l D(L, x)\right\|
$$

which by $\left({ }^{*}\right)$ for some $C_{2}>0$ is

$$
\leq C_{2} z(N) N^{\frac{1}{2}}(\log N)<N^{\frac{1}{2}}(\log N)^{2}
$$

Also,

$$
\begin{align*}
\left\|\max _{1 \leq l \leq N}|K(s(N), l, x)|\right\| & =\left\|\max _{1 \leq l \leq z(N)}\left|\sum_{1 \leq l \leq z(N)} \frac{1}{l}\left(\sum_{j=1} \chi_{s(N)}\left(\left\{\lambda_{R_{k}} x\right\}\right)-l|s(N)|\right)\right|\right\| \\
& \leq \sum_{j=1}^{N}\left\|\chi_{s(N)}\left(\left\{\lambda_{j} x\right\}\right)\right\|+N|s(N)| \tag{**}
\end{align*}
$$

As $\chi_{R_{k}}^{2}=\chi_{R_{k}}$, if

$$
E_{k, j}=\left\{x \in\left[T_{0}, T_{0}+T\right\}:\left\{\lambda_{j} x\right\} \in R_{k}\right\}
$$

we see that, the right hand side of $\left({ }^{* *}\right)$ is

$$
\leq \sum_{j=1}^{N}\left(\sum_{k>z(N)}\left|E_{k, j}\right|\right)^{\frac{1}{2}}+N|s(N)|
$$

It is easy to check that there exists $C_{3}=C_{3}\left(T_{0}, T\right)>0$ such that $\left|E_{k, j}\right| \leq C_{3}\left|R_{k}\right|=O\left(a^{-k}\right)$

Since $|s(N)|<1$, this means that there exists $C_{4}>0$ such that

$$
\left\|\max _{1 \leq l \leq N}|K(s(N), l, x)|\right\| \leq C_{4} N|s(N)|^{\frac{1}{2}}
$$

Also, there exists $C_{5}>0$ such that

$$
|s(N)|=\sum_{k>z(N)}\left|R_{k}\right| \leq C_{5} \sum_{k>z(N)} a^{-k}<C_{5} a^{-z(N)} .
$$

Then we have,

$$
\left\|\max _{1 \leq l \leq N} \mid K(B, l, x)\right\|<N a^{-z(N)}+N^{\frac{1}{2}}(\log N)^{2}
$$

The first term of the right hand side is equal to 1 . So we have shown that there exists $C_{6}>0$ such that

$$
\left\|\max _{1 \leq l \leq N}|K(B, l, x)|\right\| \leq C_{6} N^{\frac{1}{2}}(\log N)^{2}
$$

Using the same argument as in Theorem 1 and choosing $f(N, \varepsilon)=N^{\frac{1}{2}}(\log N)^{\frac{5}{2}+\varepsilon}$ gives us Theorem 2.

References

[1] H.L. Montgomery \& J.D Vaaler, Maximal Variants of Basic Inequality, Congress of Number Theory, Universidad del Paes Vasco, Zarautz, (1984), 181-197.
[2] J.W. Cassel, Some Metric Theorems in Diophantine Approximation III, Proc. Camb.Phil. Soc. 46(1950), 219-225.
[3] P. Erdos \& P.Turan, On A Problem in The Theory of Uniform Distribution I,II, Indag. Math. 10(1948), 370-378, 406-413.
[4] P. Sjolin, Convergence Almost Everywhere of Certain Singular Integrals and Multiple Fourier Series, C. Ark. Math 9(1971), 65-90.
[5] R.C. Baker, Metric Number Theory and The Large Sieve, Journal of London Math. Soc.(2) 24(1981), 34-40.
[6] R.C. Baker, Entire Functions and The Uniform Distribution Modulo One, Proc. Lond. Math. Soc. 49 (1984), 87-110.
[7] R. Nair, Some Theorems on Metric Uniform Distribution Using L ${ }^{2}$ Methods, Journal of Number Theory, 35(1990), 16-64.

