
International Journal of Innovative Computing 4: 1(2014) 41-46

1 41

International Journal
of

Innovative Computing

Journal Homepage: http://se.cs.utm.my/ijic

Policy Overlap Analysis to Avoid Policy
Conflict in Policy-based Management

Systems

Abdehamid Abdelhadi Mansor Wan M. N. Wan Kadir, Hidayah Elias and Ahmed Elsawi
Department of Computer Science Department of Software Engineering
Faculty of Mathematical Sciences Faculty of Computing

University of Khartoum Universiti Teknologi Malaysia
Khartoum, Sudan Johor, Malaysia

abhamidhn@uofk.edu wnasir@cs.utm.my, shahlida@gmail.com, elsawi@gmail.com

Abstract— PobMC is an adaptive scalable approach which
uses policies to control and adapt the system behaviour.
Moreover, PobMC has the capability to decouple the adaptation
concerns from the application code. Since policies are used to
govern the system behavior, conflicts may arise in the set of
policies and also may arise during the refinement process,
between the high-level goals and the implementable policies.
Furthermore, policy conflict may result from propagation,
action composition and other constraint policies, which cannot
be detected by simply comparing authorization policies. In this
paper we classify our system policy conflicts to verify that
policies enforced correctly. Then, we present a static analysis to
address the overlap of domains when there are two or more
policies are enforced simultaneously. In addition, the paper
provides temporal specification patterns to detect each type of
conflicts. The evaluation result shows that the performance of
PobMC is better than the previous works. Less than a second is
enough to perform every task as individual.

Keywords - policy conflict, static analysis, overlap, policy
classification, adaptive policy-based.

I. INTRODUCTION

Current software systems increasingly rely on dynamically
adaptive software due to changes in the operational
environment, user requirements, upgrades of software
modules and failure or substitution of devices [1]. However,
there are several challenges in developing self-adaptive
systems which must be addressed appropriately. Evolution
occurs with high cost, if it is not carefully planned. Ideally,
the evolution should occur without interrupting the system
execution. Furthermore, avoiding errors and conflicts
between policies and addressing the scalability issues remain

as the main challenges of current research. Adaptive software
is often a complex system with a great degree of autonomy.
Providing mechanisms to ensure whether the system is
operating correctly is a fundamental challenge.

Policy-based approach has been well acknowledged as a
methodology that provides flexibility, scalability and
adaptability, control Quality of Service and security, by
considering administratively specified rules. The hype of
policy-based management was to commit with these features
during run-time as a result of changeable network conditions
resulting from the interactions of users, applications and
existing resources.

Static and dynamic conflicts were considered as two
classes of conflicts which need to be understood and
independently managed [2]. The distinction between these
two classes is important; as detecting and resolving of
conflict can be computationally intensive, time consuming
and hence, costly and is most preferably done at compile-
time. Static analysis is used by the policy compiler to detect
specification errors. Moreover, to reduce run-time conflicts
which occurs among rules; whose event and condition parts
can be statically matched. It may not be able to evaluate
policy constraints, as conflicts may depend on the run-time
state of the system [3]. While dynamic analysis makes use of
meta-information at runtime to detect and control potential
conflicts among different policies which cannot be detected
during the compilation time [4].

Moreover, current research has revealed that there is still a
large class of policy conflict which simply cannot be
determined statically. The current state of the art in policy-
based approach suffers from two main limitations. Firstly,

Mansor, A. A., et al. / IJIC 4:1(2014),41-46

 42

they have limited ways of detecting and resolving conflicts in
policies. Secondly, they do not have mechanisms to ensure
that policies are enforced or executed correctly. These
limitations severely limit the effectiveness of policies as a
way of managing ubiquitous computing environments.

Policy-based Managers Coordination (PobMC) is an
adaptive approach which is proposed in our previous works
[5, 6]. Policies are used to manage and dynamically change
PobMC behavior. There are two sets of policies used to
govern PobMC. First set is consisting of obligation
“management policies”, which are enforced by managers to
govern the system behavior. Second set is authorizing
“coordination policies” which are used to coordinate
managers’ tasks by changing the management policies.

In this paper, an overlap analysis is presented based on
the policy conflicts classification that presented in our
previous work [7] which proposed static analysis to address
the inconsistencies of policies. In this paper also we proposed
Temporal logic patterns to express and avoid overlap of
domains. The Linear Temporal Logic (LTL) patterns enable
the automation of a significant policy conflict analysis.
Moreover, the LTL helps to introduce a number of
correctness properties of avoiding the potential conflicts in
the context of PobMC.

In Section 2 of this paper, we explained the details of case
study, Section 3 we give more details of the policy conflict
classification. Section 4 presents an introduction of overlap
analysis. In Section 5 we discussed and classified policy
conflict. Section 6 explains our approach to conflict
detection. Section 6 discusses related work. Conclusions and
further work are discussed in section 7.

II. SMART MALL SYSTEM (SMALLS)

Smart Mall System(SMALLS) [8] is a system that allows
users to navigate their location in the mall. The users could
be able to query the place that they are heading such as baby
area, shoes area, food area, banking services area etc. The
system directs user how to find the area. SMALLS operation
can be summarized as follows. Each user carries a mobile
device such as a smart phone as well as a wireless sensor. In
addition, locations in the environment shopping area or
services area are associated with their own wireless sensors.
The sensors determine which area is closest to the user at a
given moment and pass this information to a server, which
provides specific Web services for each individual object.

SMALLS is required to adapt its behaviour according to
the changes of the environment. To achieve this aim, we
suppose that the system runs in normal, vacation and failure
modes and in each context it enforces various sets of policies
to adapt to the current conditions. For the reason of area, here
we only identify policies defined for sensing control module
while the system runs in normal or failure modes.

In our SMALLS scenario, there are some identical clients
(Smart Phones SP) that need some specific service, which is
provided by three identical servers. Each client sends its
requests to the corresponding manager (which plays the role
as a load-balancer), instead of communicating directly with
the servers. The responsibility of a manager is to distribute
the incoming requests evenly among the servers. As a result,
the servers receive an equal number of service requests. After

finishing the requested service, the servers reply directly to
the clients. Then the clients may ask for service again.

A Self Management Module (SMM) structure consists of
three layers. First, Actors Layer which is dedicated to the
functional behaviour of SMM and contains computational
actors. Actors are governed by managers using policies to
achieve predefined goals. Second, Managers Layer managers
are meta-actors that can operate in different configurations
each is consist of two types of policies: obligation
“management” policies to direct the behaviour of actors, and
authorization “coordination policies” to specify what
activities a subject is permitted or forbidden to do to a set of
target objects, in order to coordinate managers’ tasks. Third,
View Layer which provides actors required state information
to the relevant managers.

III. POLICY CONFLICT CLASSIFICATION

Policy conflicts can arise when multiple policies control a
system behaviour. A conflict occurs when an event triggers
multiple actions that cannot occur together as specified by the
system administrator. Human error is one obstacle to accurate
access-control policies; the policy authors who assign and
maintain these policies are prone to making specification
errors that lead to incorrect policies. Access-control policies
consist of a set of rules that dictate the conditions under
which users will be allowed access to resources. These rules
may conflict with each other. Conflict detection between
management policies can be performed statically for a set of
policies in a policy server as part of the policy specification
process or at run-time [9, 10].

For any set of policies has been enforced in
the system, the term policy conflict can be defined as follow.
Two policies are in conflict if and only if one of
the following cases takes place:

a. have been enforced simultaneously, then

the system cannot choose a policy to enforce.
b. The execution of violates the action of .

c. Executing that makes impossible to be enforced

and vice versa (eg. turn-on and turn-off for the same
device simultaneously).

d. Executing of before while it must be executed

after (the ordering). For instance, is “authorize

the user” and is “download the system files”.
While in the system specification, the system must
authorize the user before he gets the system files.

In order to detect the conflicting policies, first we must
identify and define conflicting actions explicitly. Then, the
simultaneous triggering of those policies should be
investigated. Second, the ordering of events and actions
should be identified clearly. Third, the inconsistent policies
should be identified to prevent them from simultaneous
execution. Finally, all system policies should be checked to
identify policies which make the action of other policies by
violating their conditions. For instance, in our SMALLS
example if is the policy that “identifying the mobile phone
location”, while the mobile phone is currently attached to the
corresponding APs, no policy that disable the database server
must be applied before the policy that “send the required
information to the mobile phone”.

Mansor, A. A., et al. / IJIC 4:1(2014),41-46

 43

According to the definition of conflicts and the above
mentioned cases to avoid the potential conflicts we need some
information to define each type of conflicts. We should
introduce classification of various conflicts that expected
among system policies.

A. Modality Conflicts, which expected when there is a triple
overlap between the set of subjects, targets and actions, of
two or more policies with modality of opposite sign to the
same subjects, actions and targets. For instance, “the
subjects are authorized and forbidden to perform the
action on the target objects”. Another example, “the
subjects are forbidden but required to perform the actions
on the object”. As an example in the SMALLS example,
“The manager is allowed to mount a device’s file system
onto the active area file system, while the device is not
authorized”.

B. Inconsistencies, which occur due to omissions, errors or
conflicting requirements of the manager specifying the
policies. For instance, “an obligation policy defines an
activity that must be performed, but there is no
authorization policy to perform the activity”. As an
example in the SMALLS example, “the same manager
cannot authorize the user and turn on the sensor”.

C. Multiple Managers’ Conflicts, overlapping of domains
related to sharing of resources such as a gateway between
two networks, a service between two or more
applications, etc. Overlapping leads to conflicts between
policies when managers can be responsible for an object
or that multiple policies apply to the object. In some
situations overlapping is prevented by creating a new
domain with an independent manager and all objects
from the overlapping set are moved into this new domain.
E.g. “at a specific time a manager is allowed to turn off
all active area sensors, while another manager is
demounting the file system when the device is leaving the
active area”.

IV.OVERLAP ANALYSIS

In this work, static analysis is used to determine whether
an event specified in the policy condition matches received
event. A trigger graph is created after the policy compilation
to identify the overlap between set of subjects, targets and
actions, in simultaneously triggered policies. Furthermore,
specifying the overlap will eventually avoid modality
conflicts and multimanager conflicts, thereby improves
system scalability. Static analysis is capable to evaluate only
potential conflicts rather than actual conflicts. However, static
analysis is limited to evaluate policy constraints, because of
that constrains are completely depending on run-time state;
moreover domain membership may change at run-time.

A. Overlapping of Subjects

This occurs when the subject of two or more obligations
or authority policies overlap, this means that it is expected in
some cases the same subject may manage different group of
targets. Figure 1 shows that P1 applies { and p2
applies , while there are some subjects are
included in both P1 and P2, this means that, the subject of p1
is and the subject of P2 is . Both p1 and p2
applies { and { respectively.

Fig. 1. Overlap of Subjects

Example 6.1 in our SMALLS scenario the same manager
may enforce two different policies, the first policy to govern a
group of Wi-Fi access points, while the other policy is to
govern a group of users in the SMALLS active area as
follows.

P1: “turn off all the sensors in the supermarket shopping area
from 12:00 pm to 7:59 am”

P2: “Users with the description name Security are allowed to
perform any action on any resource at anytime from
anywhere in the mall”

B. Overlap of Roles

This occurs when the roles of two or more obligations “O”
or authority “A” policies overlap, this means that it is
expected in some cases the same object may be directed by
different actions. The roles of such policies are in conflict if-
and-only-if for any two policies p1 and p2 in one of these
forms {O-/O+, A-/A+, O+/A-}, such that (+) indicates that the
policy is permitted and (-) indicates that the policy is
forbidden. Figure 2 shows that P1 applies { and p2
applies , while there are some roles are included
in both P1 and P2, this means that, the role of p1 is
and the role of P2 is . Both p1 and p2 applies
{ and { respectively.

Fig. 2. Overlap of Roles

C. Overlap of Targets

Similarly, when the targets of two or more obligations “O”
or authority “A” policies overlap, means that it is expected in
some cases the same target may be managed by different set
of policies. The targets of such policies are in conflict when
there are some constraints on the target. Figure 3 shows that
P1 applies { and p2 applies , while there
are some targets are included in both P1 and P2, this
means that, the role of p1 is and the role of P2 is

. Both p1 and p2 applies { and {
respectively.

P2 P1

 .

P2 P1

 .

Mansor, A. A., et al. / IJIC 4:1(2014),41-46

 44

Fig. 3. Overlap of Targets

V. CHECK AND AVOID THE OVERLAP BEHAVIOR

Several temporal logics including the Interval Temporal
Logic (ITL) [11] are capable of expressing adaptation
behavior. However, these logics are both too complex and do
not have direct notation support. The Adapt operator-
extended LTL (A-LTL), an extension to LTL, is introduced
to specify an adaptation [12, 13]. A-LTL is used in this paper
to present PobMC adaptation semantics formally. A-LTL
semantics is similar to LTL semantics because each LTL
formula is also an A-LTL formula. Moreover, A-LTL
operators are defined as those used in LTL.

To specify PobMC adaptation behavior, this work used
the adapt operator (). Informally, if are three
temporal logic formula, then means that initially the
system satisfies until it stops satisfying and starts to
satisfy . The notation is used to specify additional safe
conditions in which the adaptation occurs and logical
connections between the behavior before and after
adaptation. Although in some cases, the extra constraints are
not used (where = true). For example, resource-
restricted is used to constrain that the resource must be
restricted when the adaptation occurs.

Overlapping of domains is related to sharing of resources
such as a gateway between two networks, a service between
two or more applications, etc. Overlapping leads to conflicts
between policies when managers can be responsible for an
object or that multiple policies apply to the object. In some
situations overlap is prevented by creating a new domain with
an independent manager and all objects from the overlapping
set are moved into this new domain.

When the targets of two policies overlap, there is a
potential conflict arising from multiple managers of a single
object, when the goals of the policies are semantically
incompatible. For instance, in SMALLS, we consider the
following cases:
a. if the 'security manager' requires no users should exist

inside the stores while the 'LBS manager' identifies some
destination positions to be the stores, at a specific time a
manager is allowed to turn off all active area sensors,
while another manager is unmounting file system when
the device is leaving the active area”.

b. any two policies which oblige subjects to do both
simultaneously are in direct conflict.

There is also a potential conflict that is often tolerated,
which arises from multiple managers having authority over
the same object. In some cases, multiple managers of an
object are forbidden on the grounds of potential conflict, e.g.
generally each group of actors has a manager. In other cases
it is positively encouraged, e.g. there are normally at least

two managers with security administrator authority for a
computer system, to cover malfunctions and holiday.

Multiple managers should be authorised to operate upon a
single target, a coordinator is used to coordinate different
managers' tasks in order to ensure that there is no
simultaneous conflict of obligations. When such coordination
is carried out between managers, it may be informal and even
unformulated, but when the managers are automated it is
necessary to formalise the way in which the policies are
controlled, by ensuring that each policy only applies to one
subject at a time.
An obligation policy which is enforced by manager in
PobMC requires an authorization policy which is enforced by
coordinator to permit the action. To avoid this type of
conflict authorization policies should be designed to permit
managers to enforce their policies if there are no conflicts
caused by their policies. The target objects of , which
enforced by and , which is enforced by should
not overlap, if their goals are semantically incompatible.
Also, multiple managers having authority over the same
object should forbid from enforcing together.

 (1)

The Multi Managers Algorithm in Fig. 4 marks the
triggered events of all managers to prevent calling the
conflicting rules twice.

Fig. 4. Multi Managers Algorithm

In PobMC, there will be a variety of managers having
responsibility for the same object but fulfilling different roles
and operating in dissimilar configurations. For instance,
SenModule, SecModule, and LocModule managers in
SMALLS have different responsibilities for the same APs.
These overlapping responsibilities must be detected to avoid
errors and policy-conflict. The managed elements, “APs,”
represent the target objects and the managers’ modules
represent the source objects. The overlap behavior starts

Algorithm Multi_Managers(q, Ev[], Dom[])
1: Let overlap:=false;
// in the queue q
2: Let conflict:=false; c1:=0; c2:=0;
3: while q is not empty then
4: trigger(Ev[i], Ev[j], Ev[k]);
//push event
5: Ev[i]:=i; // in the queue q
6: Ev[j]:=j;
7: Ev[k]:=k;
//mark the triggered events
8: end while;
9: for all m in Domains do
10: if O in Dom1 ˄ O in (Dom2 ˅ Dom3)then
11: Let conflict:=true;
12: Let c1:=c1+1;
//increment of type1 conflicts
13: end if;
14: if O in Dom1 ˄ O in (Dom2 ˅ Dom3)then
15: Let conflict:=true;
16: Let c2:=c2+1;
//increment of type2 conflicts
17: end if;
18: Let Ev[i]:=i+1; Ev[j]:=j+1; Ev[k]:=k+1;
19: end for
20: return (c1, c2);

P2 P1

 .

Mansor, A. A., et al. / IJIC 4:1(2014),41-46

 45

when more than one manager starts to enforce policies to
direct the same elements. A “domain” includes a manager
and the group of elements directed by this manager. Two or
more domains overlap when there are objects that are
members of each domain.

For instance, let be three different
managers and be the groups managed by

, respectively and let be the set such that
. The overlap starts if at least two managers

are directing their object groups simultaneously.
A restriction condition must be applied to safeguard

the required system behavior. The restriction condition
should ensure that the object source reaches a safe state.
Initially, must be satisfied,

 (2)

such that when an adaptation request is received, the
system should start to satisfy both the target object and the
restriction condition

 (3)

as depicted in Fig. 5 equation (4) showing that when the
system reaches a safe state of the source objects, the system
stops being obliged by and .

 (4)

Fig. 5. An Abstraction of the Overlap Behaviour

VI.RESULTS AND DISCUSSION

The algorithm in Fig. 4 was executed for three sets
containing 100 ”SecModule”, 150 ” LocModule”, 50 ”
SenModule” rules. The output reported 91.8% of the selected
couple of rules was overlapped. The execution was repeated
for different number of policies.

Each of the evaluation was measured four times assuming
the number of policies in the location was the same
throughout. The average time required for the four times
executions according to the execution stages were as follows:

 generate the object file 0.7888s,
 send a query to managers 0.5278s,
 retrieve context information 0.5677s, and
 send back result to the mobile 0.575s.

The amount of time required to perform static conflict
avoidance at compile time was 2.46s.

In SMALLS there are some general policies pertaining to
all users as well as more specific policies relating to staff in a
department or section. As staff may also be members of
many different domains. Here detecting the triple overlaps
between policies with modalities of opposite signs, do not
result in actual conflicts. As in the following policies:
users can not reboot () the workstations
administrators can reboot () the workstations

The evaluation result shows that the performance of
PobMC is better than the previous works. Less than a second
was the enough to perform every task as individual.
Furthermore, by this evaluation, it is possible to compare
PobMC to other existing approaches in term of its avoiding
policy cycles.

VII. RELATED WORKS

There are some techniques to static conflict detection
discussed in the literature. [3] proposed an extended model of
Event-Condition-Action (ECA) called ECA-Post-condition to
enable developers and administrators to annotate actions with
their effects. The ECA-P framework uses static and dynamic
conflict detection techniques to detect failure in policy
execution by using post condition to verify successful
completion of policy actions. However, Policy actions may
not execute to completion due to various reasons such as
changing active space configuration, device and component
failure or software errors. Also [14] presented an analysis
using [15], which is an actor-based language for modelling
concurrent asynchronous systems which allows to model the
system as a set of reactive objects called rebecs, interacting
by message passing. In order to introduce this, a new
classification of conflicts may occur during governing
policies. Moreover, they introduced a number of correctness
properties of the adaptation process in the context of their
models. Then, they used static analysis of adaptation policies
in addition to model checking technique to verify those
properties. While their system includes many different
managers, there may be more than event.

Obviously there is a limitation in developing policy-based
management approaches that do not provide ensuing support
for detecting and resolving conflicts. While a considerable
attempt at static conflict detection has been presented in [16],
the very complex and crucial issue of dynamic conflict
detection in a policy-based management has gone largely
unresolved. Moreover, current research has revealed that
there is still a large class of policy conflict which cannot be
determined statically. Static conflicts detection is considered
as the most important class of conflict which needs to be
understood and independently managed [17]. It is used to
detect specification errors and to reduce run-time conflicts
which occur among rules; whose event and condition parts
can be statically matched. It may not be able to evaluate
policy constraints, as conflicts may depend on the run-time
state of the system [3].

One approach to avoid conflicts in authorization rules is
presented by [18]. They argue that a large number of rules
may apply to a service and detecting and resolving conflicts
in real time can be a daunting task. However, their system is
completely static and assumes that is it always possible to

Safe state

 After adaptation

: is satisfied

 Before adaptation

Mansor, A. A., et al. / IJIC 4:1(2014),41-46

 46

determine priorities ahead of time and avoid conflicts.
Another approach for avoiding conflicts in policy
specification is proposed by [19-21] for defining
authorization policies for Hippocratic databases. Their
system allows system administrators to specify system
policies for administration and regulatory compliance and
these policies have the highest priority. Moreover, the system
allows users to manage their privacy preference as their
policies do not conflict with the system policies.

While a considerable attempt at static and dynamic
conflict detection has been presented in previous work, the
very complex and crucial issue of dynamic conflict detection
in policy-based management has gone largely unresolved.
Moreover, current research has revealed that there is still a
large class of policy conflict, which simply cannot be
determined statically. The current state of the art in policy-
based approach suffers from two main limitations. Firstly,
they have limited ways of detecting and resolving conflicts in
policies. Secondly, they do not have mechanisms to ensure
that policies are enforced or executed correctly. These
limitations severely limit the effectiveness of policies as a
way of managing ubiquitous computing environments.

In our approach, the potential overlap specified and
avoided earlier since the design time, here most of the
requirement can be detected and catch during the analysis.
The users policies may override other polices or be
overridden based on context information.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a static analysis technique to
address the inconsistencies, scalability when there is more
than one manager controlling the system behaviour. Then, we
classify our system policy conflicts, to detect the conflicts,
and to verify that policies are enforced correctly. Moreover,
we provide temporal specification patterns to detect each
type of conflicts. The paper also discuss another aspect of
policy analysis relates to determining the policies applying to
a particular subject or target. Our policies explicitly identify
both subject and target and the domain service maintains the
list of policies applying to a domain so that it is
comparatively easy to do.

The paper concentrates on the static analysis of policies,
but in the near future we plan to present dynamic conflict
analysis to avoid the overheads of a potentially complex
analysis every time an obligation is triggered or an
authorization checked. The need for dynamic analysis is that
a domain membership may change dynamically and some
constraints can only be evaluated at run-time as they may
depend on object states or current time.

ACKNOWLEDGEMENT

The authors would like to express their deepest gratitude
to Universiti Teknologi Malaysia (UTM) for their financial
support under Research University Grant Scheme (Vot
number Q.J130000.7128.01H13).

REFERENCES
[1] S. P. Reiss, "Evolving evolution," Lisbon, Portugal, 2005, pp. 136-139.

[2] N. Dunlop, J.Indulska, and K.Raymond, "Dynamic conflict detection in
policy-based management systems," 2002, pp. 15-26.

[3] S. Chetan Shiva, R. Anand, and R. Campbell. "An ECA-P policy-based
framework for managing ubiquitous computing environments," in The
Second Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2005. MobiQuitous 2005. , 2005,
pp. 33-42.

[4] W. Zhengping and L. Yuanyao, "Automatic policy conflict analysis for
cross-domain collaborations using semantic temporal logic," in
Collaborative Computing: Networking, Applications and Worksharing,
2009. CollaborateCom 2009. 5th International Conference on, 2009,
pp. 1-8.

[5] A. Mansor, W. M. N. W. Kadir and H. Elyas. " Policy-based Approach
for Dynamic Architectural Adaptation: A Case Study on Location-
Based System," 12-14 December 2011, pp. 171-176.

[6] A. Mansor, W. M. N. W. Kadir and H. Elyas. "Policy-based Approach
to Detect and Resolve Policy Conflict for Static and Dynamic
Architecture " Journal of Theoretical and Applied Information
Technology, vol. Vol.37 No.2, 31st March 2012, pp. 1-10.

[7] A. Mansor, W. M. N. W. Kadir and H. Elyas and S. Shafay. "Analysis
of Adaptive Policy-based Approach to Detect and Avoid Policy
Conflicts," vol. The 19th Asia Software Engineering Conference
APSEC 2012, Hong Kong, Dec. 4-7 2012, pp.200-210.

[8] O. O. A. Oyebisi T.O, "Development of Congestion Control Scheme
for Wireless Mobile Network " Journal of Theoretical and Applied
Information Technology vol. Vol4No10, 2008, pp.1- 8.

[9] E. H. Sibley, R. L. Wexelblat, J. B. Michael, M. C. Tanner and D. C.
Littman. "The role of policy in requirements definition," San Diego,
CA, 1993, pp. 277-280.

[10] J. B. Michael, E. H. Sibley and D. C. Littleman. "Integration of formal
and heuristic reasoning as a basis for testing and debugging computer
security policy," 1993, pp. 69-75.

[11] A. Cau, B. Moszkowski and H. Zedan. "Interval temporal logic," URL:
http://www. cms. dmu. ac. uk/~ cau/itlhomepage/itlhomepage. html,
2006.

[12] J. Zhang and B. H. C. Cheng, "Specifying adaptation semantics," 2005,
pp. 1-7.

[13] J. Zhang and B. H. C. Cheng, "Using temporal logic to specify
adaptive program semantics," Journal of Systems and Software, vol.
79, 2006, pp. 1361-1369.

[14] N. Khakpour, R. Khosravi, M. Sirjani and S. Jalili. "Formal analysis of
policy-based self-adaptive systems," in 25th Annual ACM Symposium
on Applied Computing, SAC 2010, March 22, 2010 - March 26, 2010,
Sierre, Switzerland, 2010, pp. 2536-2543.

[15] M. Sirjani, A. Movaghar, A. Shali and F. S. de Boer. "Modeling and
verification of reactive systems using Rebeca," Fundamenta
Informaticae, vol. 63, 2004, pp. 385-410.

[16] E. C. Lupu and M. Sloman. "Conflicts in policy-based distributed
systems management," Software Engineering, IEEE Transactions on,
vol. 25, 1999, pp. 852-869.

[17] N. Dunlop, J. Indulska and K. Raymond. "Dynamic conflict detection
in policy-based management systems," in Enterprise Distributed Object
Computing Conference, 2002. EDOC '02. Proceedings. Sixth
International, 2002, pp. 15-26.

[18] W. D. Yu and E. Nayak, "An algorithmic approach to authorization
rules conflict resolution in software security," 2008, pp. 32-35.

[19] R. Agrawal, D. Asonov, R. Bayardo, T. Grandison, C. Johnson and J.
Kiernan. "Managing disclosure of private health data with hippocratic
databases," IBM Research White Paper, Januray, 2005.

[20] D. Agrawal, K. W. Lee and J. Lobo. "Policy-based management of
networked computing systems," Communications Magazine, IEEE,
vol. 43, 2005, pp. 69-75.

[21] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan and W. Rjaibi.

 "Extending relational database systems to automatically enforce
privacy policies," 2005, pp. 1013-1022.

