ELECTROMAGNETIC BAND GAP (EBG) FOR MICROSTRIP ANTENNA DESIGN

AINOR KHALIAH BINTI MOHD ISA

A thesis submitted in fulfillment of the requirement for the award of the degree of Master of Engineering (Electrical-Electronics of Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2007

To my beloved mother and father

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent and Most Merciful, Who has created the mankind with knowledge, wisdom and power.

First and foremost, I would like to express my deep and sincere gratitude to my supervisor, Dr Mohamad Kamal bin Abdul Rahim. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present project.

I wish to express my warm and sincere thanks to Mr. Thelaha bin Masri for the constant help and knowledge contribution to ensure the success of the project. I would also like to thank all of my friend for the generous support throughout the semester, Zuhanis, Muza, Bambang, KB, Suria and Farah.

I cannot end without thanking my family and my love one, on whose constant encouragement and love I have relied throughout my research in completing this project. May God bless each and every one of you.

ABSTRACT

Microstrip patch antennas became very popular in mobile and radio wireless communication. This is because of ease of analysis and fabrication, and their attractive radiation characteristics. However, they have some drawbacks of low efficiency, narrow bandwidth and surface wave losses. In order to overcome the limitations of microstrip antennas such as narrow bandwidth (< 5%), lower gain (-6 dB), excitation of surface waves etc, a new solution method; using electromagnetic bandgap (EBG) materials, as substrates has attracted increasing attention. Unlike other methods, this new method utilizes the inherent properties of dielectric materials to enhance microstrip antenna performance. These periodic structures have the unique property of preventing the propagation of electromagnetic waves for specific frequencies and directions which are defined by the shape, size, symmetry, and the material used in their construction. Some EBG structures include drilled holes in dielectrics, patterns etched in the ground plane, and metallic patches placed around microstrip structures. The aim of this project are to design, simulate and fabricate the new EBG structure operating at 2.4GHz frequency and study the performance of the rectangular microstrip antenna with and without EBG structure. Those designs were simulated with Microwave Office software and tested with the Network Analyzer. Both, simulated and measured data were compared and contrasted.

ABSTRAK

Antena mikrojalur menjadi semakin popular dalam bidang telekomunikasi tanpa wayar bergerak. Ini disebabkan kemudahan dalam analisis, fibrikasi, dan mempunyai karakter radiasi yang menarik. Walaubagaimana pun, ianya mempunyai beberapa kelemahan seperti kecekapan yang rendah, jalurlebar yang sempit dan kehilangan gelombang permukaan. Untuk mengatasi masalah ini, satu penyelesaian baru, iaitu penggunaan bahan jalurcelah elektromagnet (EBG) boleh digunakan. Berbanding cara yang lain, cara in menggunakan sifat semulajadi bahan dielektrik untuk menambahkan keupayaan antenna mikrojalur. Struktur yang berkala ini mempunyai sifat yang unik iaitu menghalang perambatan gelombang elektromagnet untuk frekuensi dan arah yang tertentu berdasarkan bentuk, saiz, dan bahan yang digunakan untuk membinanya. Sesetengah struktur EBG ini termasuklah menebuk lubang pada dielektrik, mengukir corak pada permukaan bawah dan tampalan logam di sekeliling struktur mikrojalur. Tujuan projek ini ialah untuk merekabentuk, simulasi and fibrikasi struktur EBG yang baru dan beroperasi pada frekuensi 2.4GHz dan mengkaji kebolehan antenna mikrojalur dan antenna mikrojalur dengan jalurcelah elektromagnet. Kesemua rekaan ini disimulasi menggunakan perisian Microwave Office dan diuji menggunakan Network Analyzer. Keputusan kedua-dua rekaan ini dibanding antara satu sama lain.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xvi

CHAPTER 1	INTF	RODUCTION	
	1.1	Introduction	1
	1.2	Objectives	2
	1.3	Scope of work	2
	1.4	Outline of the thesis	2
	1.5	Summary	3
CHAPTER 2	MICI	ROSTRIP PATCH ANTENNA	
	2.1	Introduction	4
	2.2	Basic characteristic	5
	2.3	Microstrip antenna properties	6
		2.3.1 Polarization	6
		2.3.2 Radiation Pattern	7
		2.3.3 Half Power Beamwidth (HPBW)	8
		2.3.4 Gain	9
		2.3.5 Voltage Standing Wave Ratio (VSWR)	10
		2.3.6 Bandwidth	11
	2.4	Feeding Techniques	11
	2.5	Methods of analysis	13
	2.6	Summary	13
CHAPTER 3	ELEC	CTROMAGNETIC BAND GAP (EBG)	
	3.1	Introduction	14
	3.2	Formation of surface waves (surface Plasmon)	15
	3.3	Perforated EBG structure	16
	3.4	Metallodielectric EBG structure	19
	3.5	Applications of electromagnetic band gap (EBG)	20
		2.5.1 A multi pariod EPG structure for	20
		microstrin entenne	20
		2.5.2 Widehend microstrin noteh entenne	20
		5.5.2 Wideband microstrip patch antenna	25
	2.6	with EBG substrate	25
	3.6	Summary	31
CHAPTER 4	DESI	IGN METHODOLOGY	
	4.1	Conventional Microstrip antenna design	32
		4.1.1 Theoretical design	32
		4.1.2 Design Specifications	34
	4.2	Electromagnetic band gap (EBG) structure design	35
		4.2.1 Design Specification	36
	4.3	Microstrip antenna with EBG structure	37
	4.4	Simulation	37

	4.5	Fabric	eation	38
		4.5.1	Generate mask on transparency	38
		4.5.2	Photo exposure process	38
		4.5.3	Etching in developer solution	39
		4.5.4	Etching in Ferric Chloride	39
		4.5.5	Soldering the probe	39
	4.6	Testin	g (Measurement)	43
	4.7	Summ	hary	43
CHAPTER 5	SIMU	ULATIO	N AND MEASUREMENT RESULTS	
	5.1	Conve	entional Microstrip antenna	44
	5.2	Electr	omagnetic band gap (EBG) structure	48
		5.2.1	Effect of the vias locations	52
		5.2.2	Effect of the separation (gap)	53
	5.3	Micro	strip antenna with EBG structure	55
	5.4	Summ	hary	58
CHAPTER 6	CONCLUSIONS AND SUGGESTIONS			
	6.1	Concl	usion	59
	6.2	Sugge	stion for future works	60
REFERENCES				61
APPENDIX A				64

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Conversion Table for SWR	10
4.1	Design parameters of microstrip antenna	34
5.1	Comparison between conventional microstrip antenna	
	and microstrip antenna with EBG structure	58

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Typical geometry of a microstrip antenna	5
2.2	Types of antenna polarization	7
2.3	Radiation pattern of a generic directional antenna	8
2.4	Half power beamwidth	9
2.5	Feeding Methods	12
3.1	Field lines radiating from a patch antenna; illustrates the	
	formation of surface waves	16
3.2	Technique used to fabricate the first 3D PC structure, the	
	Yablonovite	17
3.3	2D photonic crystal structure patterned with a triangular	
	crystal lattice; the crystal lattice is of cylindrical air posts	
	in a high dielectric substrate.	17
3.4	Illustration of a patch designed on a photonic crystal	
	substrate; defect introduced in the area under the patch	18
3.5	Cross section views of the patches of the conventional and	
	sandwiched EBG substrates	21
3.6	Schematic of the single and multi period EBG structure	
	sandwiched between the patch antenna and ground plane.	22
3.7	Simulated (solid line) and measured (dotted line) input	
	beam loss (S11) for conventional and two antennas on the	
	sandwiched EBG structure.	23
3.8	Simulated (solid line) and measured (dotted line) radiation	
	patterns for conventional patch and two patches on the	

	single period and multiperiod EBG structure	24
3.9	Geometry of a two layer EBG structure	26
3.10	Magnitude of RCS vs. frequency on a two layer EBG	
	structure with $\varepsilon_r = 2.5$, $h_1 = h_2 = 1.59$ mm, wave incident	
	horizontally with vertical polarization.	26
3.11	Radiation patterns of the reference antenna with L=9mm,	
	W= 4mm, ε_r = 2.5, h=1.59mm, L _f = 0.8mm, ground	
	plane: 60mm by 60mm (a) Front radiation (b) Back radiation	27
3.12	E and H plane radiation patterns of a single layer EBG	
	antenna with L=9mm, W= 4mm, ε_r = 2.5, h=1.59mm,	
	$L_f = 0.8$ mm, ground plane: 60mm by 60mm at	
	9.87GHz (a) Front radiation (b) Back radiation	28
3.13	Geometry of the two layer EBG antenna with L=9mm,	
	W =4mm, ε_r = 2.5, h_1 = h_2 =1.59mm, L_f =2.1mm,	
	$X_0 = 12$ mm, $Y_0 = 8.3$ mm, EBG: 8mm by 8mm and	
	7.8mm by 8mm, spacing 0.2mm and 0.1mm, ground	
	plane:60mm by 60mm.	29
3.14	The S11 of the optimized two layer EBG antenna of Figure 3.13	30
3.15	E and H plane radiation patterns of the optimized two layer	
	EBG antenna of Figure 3.13 at 11.36GHz (a) Front radiation	
	(b) Back radiation	31
4.1	EM structure for conventional rectangular microstrip antenna	35
4.2	EM structure for EBG structure	37
4.3	Circuit pattern on transparency	40
4.4	Photo exposure machine	40
4.5	Etching in developer solution	40
4.6	Etching in ferric chloride	41
4.7	Soldering process	41

4.8	Flowchart of the fabrication process	42
4.9	Marconi Scalar Analyzer 6204	43
5.1	EM structure with the calculated value of W, L and port position	45
5.2	Fabricated structure of microstrip antenna	45
5.3	3D layout of the conventional rectangular patch antenna with	
	the coaxial feed	46
5.4	Return Loss for conventional rectangular patch antenna	47
5.5	Maximum radiation at 0° , gain = 5.58dB for conventional	
	rectangular patch antenna	48
5.6	EM structure for the EBG	49
5.7	Fabricated view of EBG structure	49
5.8	3D layout of the EBG structure with the transmission	
	line analysis method	50
5.9	S21 parameter for the EBG structure	51
5.10	Comparison of S21 parameters between simulation	
	and measurement values of the EBG structure	51
5.11	Different location of the vias in the EBG structure	52
5.12	Comparison of S21 for the different location of vias	53
5.13	Different separation (gap) of the EBG structure	54
5.14	Comparison of S21 parameters for different separation	
	gap of EBG structure.	55
5.15	EM structure of microstrip antenna with EBG structure	56
5.16	3D layout of the microstrip antenna with EBG structure	57
5.17	Maximum radiation at 0°, gain = 7.689dB for microstrip	
	antenna with EBG structure	57

LIST OF SYMBOLS

mm	-	millimeter
dB	-	decibel
Hz	-	hertz
Κ	-	kilo
D,d	-	diameter
Н	-	height
L	-	length
W	-	width
Γ	-	reflection coefficient
Z ₀	-	characteristic impedance
λο	-	free-space wavelength
ε _r	-	dielectric constant of the substrate
h	-	patch thickness
c	-	speed of light $3x \ 10^{-8}$ m/s

CHAPTER 1

INTRODUCTION

1.1 Introduction

Microstrip patch antennas have been an attractive choice in mobile and radio wireless communication. This is because they have advantages such as low profile, conformal, low cost and robust. However, at the same time they have disadvantages of low efficiency, narrow bandwidth and surface wave losses.

Recently, there has been considerable research effort in the electromagnetic band gap (EBG) structure for antenna application to suppress the surface wave and improve the radiation performance of the antenna.

In this project, it is proposed that the microstrip antenna having the EBG structure, which is placed around the patch antenna. The proposed design is evaluated using the Microwave Office and the effectiveness of the design is compared with the conventional microstrip antenna.

1.2 Objectives

The objectives of this project are to design, simulate and fabricate the new EBG structure operating at 2.4GHz frequency and study the performance of the rectangular microstrip antenna with and without EBG structure.

1.3 Scope of work

The scopes of work of this project are to study the basic electromagnetic band gap (EBG) properties from several published papers and books, design a conventional rectangular microstrip antenna and the new EBG structure operating at 2.4GHz frequency.

These designs are simulated using Microwave Office software. The designs were then etched on FR4 substrate with dielectric constant of 4.5 and height of 1.6 mm. Network Analyzer was used to measure the designs. Both simulated and measured data are compared and contrasted.

1.4 Outline of the Thesis

The thesis consists of six chapters and the overview of all the chapters are as follows:

- Chapter 1: This chapter provides a brief introduction on the background, the objectives of the project and scope of work involved in accomplishing the project.
- Chapter 2: A technical description of microstrip antenna focusing on basis characteristics and typical excitation (feeding) methods, and

concludes with an analytical model of the patch were discussed in this chapter.

- Chapter 3: Literature review of electromagnetic bang gap (EBG) is describes in this chapter. This chapter focuses on the underlying principles of electromagnetic band gap (EBG) and their associate properties.
- Chapter 4: This chapter gives an overview of the antenna design methodology with the fundamental process in the design, simulate, fabricate and testing (measurement) procedures.
- Chapter 5: Chapter 5 describes the simulation and measurement results obtained from the described methodology.
- Chapter 6: A final conclusions is made in chapter 6 based on the outcome of the project, followed by the recommendations for the future work.

1.5 Summary

This chapter provides the introduction for the project. Its cover the objectives, scope of work and the flow of this thesis. This chapter is the major part of the thesis because its summaries the whole process.