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ABSTRACT

As a prerequisite for RTO implementation, data collected from a process plant must be
treated by three important data validation stages, i.e., steady state detection, data
reconciliation and gross error detection to eliminate errors and inconsistencies. This paper
discusses the development of the data validation stage for real time optimization in a fatty
acid fractionation process. To evaluate the proposed data validation system, single and
multiple gross errors in the form of leakages in process stream were imposed to the
process. The results proved the capability of the proposed tool in identifying and
rectifying all the gross errors introduced to the process.

Keywords: Data Validation, Steady State Detection, Data Reconciliation, Gross Error
Detection.

1 INRODUCTION

Process industries have been undergoing substantial changes in order to cope with new
challenges resulting from high energy and manpower costs, strict safety and
environmental regulations, stringent product specification and scarcity of reduced
variation feedstock as well as stiff competition from new players. Due to these reasons,
real time optimisation (RTQ) has been brought forward for chemical industries as
potential selutions to the increasingly intense production challenge.

Genichi ef al. (1994) proposes that the second stage in the real time optimisation
(RTO) cycle is data validation. Data validation is consisted of three major components,
which are steady state detection, data reconciliation and gross error detection.

RTO moves processes from one steady state operating condition to another setting
that are more profitable. Therefore, steady state detection is required to determine the
condition of the process and the time required for an optimisation cycle. RTO is only
implemented if the plant is at steady state and the plant must therefore be allowed to settle
so that the desired condition is obtained. Darby and White (1988) proposed that the time
period between two real time optimisation executions must be much longer than the
process settling time to ensure that the process returns to steady state operation before
optimisation is conducted again.

Measurements of process variables such as flow rates, pressures, levels,
concentrations and temperatures in a chemical process are subject to error, both random
and gross. These errors are often unavoidable and they may foul signals during
measurements, processing and transmission stages. Random and gross errors can lead to
deterioration in the performance of the control systems. At the limit, larger gross error
can even nullify gains achievable through process optimisation. These erroneous data can
even drive the process to uneconomic or unsafe operating regime. As a result, measures
to eliminate these effects must therefore be in place to ensure the success of any
optimisation tasks. Data reconciliation and gross error detection were required to
accomplish these important tasks.

Data reconciliation is developed to improve the accuracy of measurements by
reducing the effect of error in the data. Meanwhile, these measurements are adjusted to
satisfy the conservation laws and the balance constraints (e.g. energy, mass, etc.). This
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was accompanied by a gross error detection mechanism to remove any gross error from
the measurement.

2 DATA VALIDATION

2.1 STEADY STATE DETECTION METHOD

A number of methods have been proposed to certify that the required steady state
condition is already achieved prior to the execution of the optimisation cycle. In this
study, two methods were considered. The first was the composite statistical test proposed
by Narasimhan ef al. (1986) and the second was the mathematical theory of evidence
(MTE) suggested by Narasimhan ef al. (1987).

In this paper, the mathematical theory of evidence (MTE) is used. The MTE is defined
in the following equation:
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where ¢, is the random variables which obeying the Hotteling’s T* distribution with

numerator degrees of freedom 1, and denominator degrees of freedom 2N-2. A level of
significance, o is chosen, and T7,y_, () 18 calculated to be the upper value of the T

distribution. If i, <7T},,_,, the plant is assumed to be at steady state with respect to the

variable i, If /2, >T},y_, . the plant is taken as not being at a steady state condition.

2.2 DATA RECONCILIATION

Data reconciliation is developed to improve the accuracy of measurements by reducing
the effect of error in the data. Meanwhile, these measurements are adjusted to satisfy the
conservation laws and the balance constraints (e.g. energy, mass). Normally, data
reconciliation is a constrained minimisation problem. The type of data reconciliation that
is required depends on the problem and process units involved. When only process
flowrates are reconciled, a linear data reconciliation problem is applied. On the other
hand, when composition, temperature Or pressure measurements are reconciled along with
flowrates, a nonlinear data reconciliation scheme is required. In this case, nonlinear data
reconciliation is required because it is dealing with process nonlinearity such as
thermodynamic equilibrium relationship and complex correlation for the thermodynamic
and other physical properties. The general nonlinear data reconciliation problem can be
formulated as a weighted least square minimisation (Narasimhan, 2000):

Minw(y—x)' Ty -x) ' (2)

Subject to
f)=0

gx)=<0

where fis m x 1 vector of equality constraints, g is q x 1 vector of inequality constraints, X
is n x n variance-covariance matrix, x is n x 1 vector of measured variables, y isnxl
vector of measured values of measurements of variables x and w is n x 1 vector of
weighting factor of measurements of variables x

2.3 GROSS ERROR DETECTION
The most commonly used method for detecting gross error is statistical hypothesis testing
that require selecting a statistic for the test with a known distribution and performance

characteristics. A gross error is declared if the computed test statistic exceeds a critical
value selected from a table of distribution. Among others, the statistical hypothesis tests
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include global test (GT), nodal or constraint test (NT), generalized likelithood ratio test
(GLR), bounded generalized likelihood ratio (BGLR) method, measurements test (MT),
iterative measurement test (IMT) and modified iterative measurement test (MIMT).

In this work, the Measurement Test (MT) method was used because it is suitable for
RTO application. The test statistic is as given in Equation (3) below:

Zei :| e_l (3)
o

Equation (3) also can be written as:

B )

Here, z.; is the standardised measurement errors, ¢; is the measurement errors, o;1s the
standard deviation of measurements, y; is the reconciled data and x; is the measurements.

3 PLANT SIMULATION
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Figure 1. Schematic diagram of a fatty acid fractionation plant

The fatty acid fractionation (FAF) plant considered in this paper is consisted of three
connecting packed distillation columns. The sequence of the columns is illustrated in
Figure 1. Here, crude fatty acids are separated into its components through three columns,
i.e., Pre-cut Column (PC), Light-cut Column (LC) and Middle-cut Column (MC). In the
pre-cut column, light products (Ce, Cs and C)q fatty acids) are recovered in the overhead.
The bottom stream is then fed to the light-cut column where the C,; fatty acid is separated
from the rest of the fatty acids. The bottom product of this column then enters the middle-
cut column where the C4 faity acid is recovered leaving the Cj¢ and Cyy fatty acids as
bottom product.

In this study, the FAF plant was represented by a dynamic simulation model
developed using HYSYS.Plant"™ simulator. For the purpose of RTQ implementation, the
required steady state model was also developed using the same simulator. The former took
the role of the actual plant whilst the latter provided the expected conditions if the plant
was actually at a steady state. At the same time, the steady state model needed to provide
systematic search for process optimisation especially in data reconciliation. Since the
quality of both models plays pivotal role in producing the intended end-results, the models
must therefore be accurate and robust.

To ensure the consistency of the model output, the steady state model must therefore
be validated against the dynamic model. The results revealed that close agreement
between the models with an overall difference of less than 3% was obtained and therefore
considered adequate for this study.

4 EFFECT OF GROSS ERROR
In this section, gross errors were created by simulating process leak in pipelines. It was
implemented by leaking the flowrate for the distillate stream at 60 minutes after the

process in steady state condition. The gross error was detected as the distillate flowrate
was one of the variables in the data reconciliation. The amounts of the leakage were
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highly dependent on the distillate flowrate. During implementation, care was taken not to
let the distillate flowrate to dry out. The amounts of leakage were shown in table below:

Table 1. The amount of the leakage stream

Stream Flowrate
(Kg/h)
PC-Leakage 47.6579.
LC-Leakage 3011780
MC-Leakage 124.3640

There were two ways of implementations. The first involved creating a single gross
error by leaking the distillate stream either in PC, LC or MC column. The second
approach introduced multiple gross errors by leaking all the distillate streams in the PC,
LC apd MC columns. The dynamic responses of these both cases were similar, either in
single or multiple gross errors situation. Figure 2 illustrates the dynamic response of the
process when multiple gross errors were introduced to the plant.
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Figure 2. The dynamic response of leakage and distillate streams
4.1 STEADY STATE DETECTION

In this case, 6 key measurements were selected, ie., the flowrate of the PC distillate
stream, PC bottom stream, LC distillate stream, LC bottom stream, MC distillate stream
and MC bottom stream. Fach measurement was collected over a period of 30 minutes
- from the plant model (dynamic model). The mathematical theory of evidence method was
used to carry out the intended task and the Hotteling T* was used to test the difference
between the two means. The level of significance, o was specified at 0.05% and the

Thaw.s (@) is 47.04 as determined from Equation 1. The value of ¢, for each

measurement is lower than the 72,,_, (o). FAF process achieved steady state condition

within the period of 30 minutes. Therefore, a 30 minutes or bigger cycle time can
therefore useful for RTO.

4.2 DATA RECONCILIATION
It is important to reiterate here that the purpose of data reconciliation in this study is to
support the RTO implementation where measured data must be reconciled to satisfy mass

and energy balances. This is done only when the process is at a frue steady state condition
and any adjustment required to the process data would be made as small as possible to
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guarantee that the reconciled conditions are still accurately representing the true operating
condition. Results of this implementation are shown in Table 2.

Table 2. The result of leakage study before and after data reconciliation

| Before Data Reconciliation After Data Reconciliation
PC-Leakage | 402.86 164.04
LC-Leakage 1184.30 1074.77
MC-Leakage 878.92 836.03
All-Leakage | 1952.25 1865.10

The value of the objective function before data reconciliation was highly dependent
to the amount of the distillate lost. It was proven from the table 2. The value of the
objective function. was large when all the distillate steams were leaked before data
reconciliation is carried out. It is then followed by the leakage of the LC-distillate steam.
It 1s due to the amount of the distillate lost were greater if compared to the lost of PC and
MC distillate streams. The data reconciliation problem was solved using the Successive
Quadratic Programming (SQP) algorittm provided by HYSYS optimiser. Data
reconciliation was able to reduce these gross errors and the detection of the 2ros§ error
was carried out by gross error detector.

4.3 GROSS ERROR DETECTION

The same 6 measurements that used in the steady sate detection were adopted in this study
again. The plant data and the result of the data reconciliation were compared based on the
critical value C. The critical value, € was determined based on the overall significant
level, a which was specified as 0.05 (e.g. 95% of confidential interval), and the value was
2.8044 from the standard normal distribution with accumulated probability at 0.9989. If

the value test statistic, | Zsq | 'exceeds the critical value C, then this measurement is said

to contain gross error. Otherwise, this measurement is considered free of gross error.
Measurements containing gross error are marked underline,

Flow PC-Leakage | LC-Leakage
Measurements Plant Reconciled f Plant Reconciled
(Kg/h) Daia Data Data Data
PC Bottom 9400.83 3389.98 9400.83 9389.98
PC Distillate 58993 617.53 589.93 . 617.53
LC Bottom - 4483 .59 4461.74 4483 59 4461.74
LC Distillate 4904.59 4890.82 4904.59 4890.82
MC Bottom 2982.89 2067.49 298289 2967.49
MC Distillate 1494 36 1474.77 149436 | 1474.77
Flow MC-Leakage All-Leakage
Measurements Plant Reconciled Plant Reconciled
{Kg/h) Data Data Data Data
PC Bottom 9400.83 9386.46 3400.83 9386.46
PC Distillate 637.59 622.39 637.59 622.39
LC Bottom - 4483 49 447574 4483 49 447574
LC Distillate 4904.10 4826.07 490410 4826.07
MC Bottomn 2983.02 295909 2983.02 2959.09
MC Distillate 1370.04 1471.62 1370.04 1471.62

In the PC-leakage case, one error, i.c., the PC distillate flowrate was detected. On the
other hand, LC distillate flowrate was detected containing error in the LC-leakage case.
Similarly, the MC distillate flowrate was identified in MC-leakage case. On the contrary,
all the distillate streams were detected to contain gross error when these streams were
subjected to leakage. By comparing to the three single gross error cases, the distillate
streams after leakage were the same as the case of multiple gross error. All the 2ross
errors in distillate streams were detected either in single or in multiple situations.

The distillate stream on each column was identified containing gross error when the
leakage valve of the column was opened. As mentioned earlier, when the leakage valve
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was opened, the leakage stream started to flow causing the reduction in the distillate
flowrate. The effect of gross error caused by the leakage was detected in the distillate
stream.

5 CONCLUSIONS

Data validation is crucial to the success of the real time optimisation. Steady state
detection had been applied to detect the process condition based on 6 keys measurements.
When the process achieved its steady state condition, data reconciliation had been applied
to adjust and reconcile the measurements in order to fulfil mass and energy balances.
Gross error detection was used to identify the existing of the gross error in the
measurements. As expected, gross error was detected in the distillate stream when the
leakage of the distillation stream was occurred. These results exposed the ability of the
data reconciliation and gross errors in the measurements.
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