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ABSTRACT

As a prerequisite for RTO implementation, daia collected from a process plant must be
lrcated by three importanl data validation stages, i.e.. steady state detection, data
rcconciliation and gross error detection to eliminale erro$ and inconsistencres. This paper
discusses the d€velopment of tbe data validation siage for real tine optimization in a fatty
acid fraciionation process. To evaluate the proposed dala validation sysl€m, single and
multiple gross errols in the fom1 of leakages in process stream were imposed to the
prccess. The results proved the capability of the proposed lool in identifying and
reciirying all the gross enors introduced to the process.

Ke)ryords: Data Validation, Steady State Detection, Data Reconciliation, Gross ElTor
Detection.

1 INRODUCTION

Process industnes have beell undergoing substantial changes in order to cop€ with new
challenges fesultiq from high en€rgy and manpower costs, slrict safety and
enviromrenral regulaiions, siringenr product specification and scarcity of reduced
variation feedstock as well as stiffcompetition from new players. Due to these reasons,
real time optimisation (RTO) has been bfought forward for chemical industdes as
potential solutions to the increasingly inlense production challenge.

Genichi et al. (1994) proposes that the second stage jn the real iime optimisation
(RTO) cycle is data validation. Data validation is consisted of three major components,
which are steady state d€tection, data reconciliation and gross error detection.

RTO moves processes from one steady siate operaling condilion to another setting
that are more profiiable. Therefore, st$dy siate detection is required to detennine the
condition of the proc€ss and the tlme required fof an optimisation cycle. RTO is only
implemenied if the plant is al sleady state and the plant must therefore be allowed to settle
so that the desired condition js obtained. Darby and Wlite (1988) proposed that rhe time
period between two real time optimisation executions must be much longer than the
process settling time to ensure that the process r€tums to steady state operation before
optimisation is conducted agaln.

Measurcments of process variables such as flow lates, pressurcs, levels,
concentations and temperatures in a chemical plocess are subject to enor, both random
and gross. These enors are ofien umvoidable and they may foul signals during
measurements, processing and lransmission stages. Random and gross enors can lead to
deteriomtion in the performance ofihe control syst€ms. At the Limil larger eross error
can even nullify gains achievable through process opiimisation. These enoneous data can
even drlve the process to unecoromic or unsafe operating rcgime. As a result, m€asures
to eliminate lhese effects must therefore be in place to ensure the success of any
optimisation tasks. Data Leconciliation and gross error detection were requir€d to
accomplish lhese important tasks.

Data reconciliation is developed to improve the accuracy of measurements by
reducing the efect of elTor in the daia. Meanwhile, these fteasurements afe adjusted to
satisfy lhe conservation laws and rhe balance const.ainis (e.g. energy, mass, etc.). This
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was accompanied by a gross elaor detection mechanism lo .enove any gloss eror lrom

2 DATA VALIDATION

2,1 STEADY STATE DETECTION METHOD

A number of methods have been proposed to certify lhal the required steady state

condition is alfeady achieved pnor to the execution of the oplimisation cvcle ln this
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where ri, is the randon variables which obeving the Hotteling's / distribution with

numerator degrees of freedom 1 , and denominator degrces of freedom 2'V-2 A level of

significance, {x is chosen, and 1i:"-. (o) is calculaied to be lhe upper value of the C

distribution. lf tir:7ir,\ r, tire plant is assumed to be at sleadv slale with respect to the

variable i. If /ir>Ii,r ,, the plant is taken as not being al a steady slate condiiion'

2.2 DATA RECONCILIATION

Data reconciliation is developed to improve the accuracy of measu€menls by leduclng

the effect of elror in the dala Meanwhile, these measurenents are adjusted io satisfy the

conse ation laws and the balance constraints (eg energv, rnass) Nonr1al1v, dala

reconclliation is a conslrained minimisalion problen The tvpe ofdata reconciliaiion that

is requir€d depends on the problem and process units involved when only process

flowates are ieconciled, a linear data reconciliation probiem is applied On the other

hand, when composilion, temp€rature or pressure measur€ments are reconciled along with

nowiates, a noniinear data r€conciliation scheme is requir€d In this case, nonlinear-data

reconciliation is required because it is dealing wilh process nonlinearitv such as

thermodynamic equilibrium relationship and complex correlation for the thermodvnamlc

and other physicai properties. The general nonlinear data reconclliation problem can be

rbnnulatei as a weightea least square minimisaiion (Narasimlan, 2000):
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Subject to
f (x) =t

c6)<o

$fere/ isn\  .ec 'oro equal  r l  cor 'LrJ i f ls  g i (  q \  \ecro of i reaual  rycon\rmrrh t

; .  n 
^ 'n 

16r ' f f6. .  qsrdr iance n:,r ix, . t  i '  n r  |  \e lror ol  mea'u ea !af iable'  J '  i (  n \  I

vector of m€asured vailles of measurements of variables r and t' is n x 1 vector oi

weighting factor of measurements of variables t

2.3 GROSS ERRORDETECTION

The most comnonly used melhod for detecting gross error is statistical hpothesis tesling

Lh.r reoui.e ,e.ec. ine a sul .( l i .  lor 'he te 'L with ' r  kno$'r  oi ' r  ibtron jnd pe{orndrce

ch, j 'acter inic. .  q gioqs e-or 's oec,dred i l  he comprrreo .e5l  JaIr ' r ;L e\ceed' J cr i '  cal

value selected fton a table of disldbuiion Among others' the statistical hypoihesis tests
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include global test (CT), nodal or consrrain! test (NT), generalized likelihood ratio test
(GLR), bounded Cenetalized likelihood mrio (BGLR) merhod, measurements test O{I),
iterative tneasuremenl tesr (IMT) and modified ilerative measuremeni test (MIMT)

In this work, the Measwemen! Test (MT) method was used because ii is suitable for
RTO application. The test slatistic is as given in Equalion (3) below:

Equation (3) also can be *ritten as:

Here,:.! is the standafdised measurenenl enors, er is the measurement erors, tris ihe
standard deviatiotr ofmeasurementsJ I' is the reconciled data and irr is the measuremenls.

3 PI,ANT SIMULATION

L,C

Figure 1 . Schemaric diBgraln of a fany acid fractionation plant

The fatty acid fractionation (FAF) plant considercd in this paper is consisted of tl(ee
connecting packed distillation colun s. The sequence of the columns is illustrated in
Figure L Here, clude fatty acids arc separated into its components through lhree columns,
i.e.. Pre-cut Column (PC). Light-cul Column (LC) and Middle-cut Column (MC). ln t\e
pi€-cul column, light products (C6, Cs and Cro falry acids) are recovered jn the overhead-
The botlom strealn is then led to the lightcut columr where rhe Cr, falty acid is separated
from ihe rest ofthe fatq? acids. The botlom producl ofthis colurnn then enters the middle-
cut colnn where the Crr fatty acid is recovercd leaving $e Cr6 and Cls fatty acids as

In this study, the FAF plant was represented by a dynamic simulation model
developed using HYSYS.PlantrM simulaior. FoI the purpose ofRTO inplementarion, the
requled steady slale model llas also developed using the same simulalor. The ibrmer iook
the role ofthe actuai plant whilst the latler provided the expected conditions if the plant
was actllally at a sieady stare. At the sane tiine, the steady state model needed lo provide
sysrenatic search for process optimisation especially in data reconciliation. Since the
qualiiy ofboth nodels plays pivotal role in producing the jtrtended €nd-results, the models
mnst therefore be accurate and robust.

To ensure the consistency of the model output, rhe steady state model must therefore
be validated against the dynamic model. The results reveal€d lhat close agreement
between the models with an overall diifercnce of less than 3% lvas obtained and iherefore
considered adequare for this study.

4 EFFf,CT OF GROSS ERROR

in this section, $oss elrors were created by simulating process leak in pipeiines. Ii *as
implem€nted by le3king the flowrate for the distillale stream at 60 minutes after the
process in steady state condition. The goss elror was detected as the disiillate flowrate
was one ofthe variables in d1e dala r€conciliation. The amo nts of th€ leakage were

C6, c,i, Cj
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highly dependent on the dislillate flowrate During implementation' care was taken not to

letthe disiillate flowrate io dry out. The amounts ofleakage wer€ shown intable below:

Table L. Tfe smornt ofrhe Leakage strerm

(Ks/h)
41.6519
301.1?80

MC L.akase t24.16-t0

Ihere were two ways of implementalions The first involved creating a singLe gross

eror by leaking the distillate stream either in PC, LC oL MC colunln The second

approach introduced mlLitipl€ gross errors by lealdng all the distillate stueams in the PC,

Lt anrt MC columns. The dyrlamic responses oflhese both cases were similar, either in

single or multiple gross errors situation Figurc 2 illusfates the dlnamic rcsponse ofthe
proaess when muftipie gloss erroN were introduced 1o the pla t

Figure 2. The dlaurnic rcsponse ofleakage and distillate steams

,1.I STEADY STATE DETECTION

ln this case,6 key measurements were selected, ie' tbe llowrate of lhe PC distillate

stread, PC botlom siream, LC distillate stream, LC bottom slr€am' MC distillate stream

and MC bottom siream. Each measuremenl was collected over a pedod of30 minutes

from the plant oodel (dynamic model) The mathenatical theory of evidence method was

*"J to Ju..v o"t Lr" i"tended iask and the Hotteling t' was used to iest the difference

beiween the two m€ans. The leveL of significance. d was specified at 0 05% and the

r;.--? (a) is 47.04 as determined iom Equation 1. The value of r,l, for each

measurem€nt is lower than the 7l', , (o). FAf process achieved sleadv state condition

wilhin th€ period of 30 minutes. Therefore' a l0 mi11ltes or bigger cycle time can

therefore us€tuI for RTO.

4.2 DATA RECONCILIATION

It is important io reitera!€ here tliat the purpose of data reconciliation in this stldy is to

support the RTO implementation where measured data must be reconciled to satisli mass

and energybalaaces. This is done only when the process is at a tue steady stale coMition

and any;djustment requir€d to the process &!a would be made as small as possibl€ to
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guaraniee that lhe reconciled conditions arc still accurarety representing rhe rfte operating
condilion. Results ofthis inplemertarion ar€ shown in Tabte 2.

Table 2. The result ofleakage study beibre and afrer data reconciliation

Before Data Reconciliarion Alter Data Reconciliation
402.E6 16:1.04
] l64. ]0 t071.77
t78.92 816.03
l952.t i i ri65. t 0

The value of the objective ftnction before data rcconcitiarion $.as highty depenitent
to lhe amount of the distillare iost. It was proven from l|e rable 2. The value of the
objective tunction was large when all d1e disti[ate steams were ]eaked before data
reconciliaiion is cafied our Ir is then followed by the teat(age of rhe Lc_disrinate steanr.
It is due to rhe amount of rhe disrillare tost werc grearer ifconpared to the losr ofpc and
MC distillate streans. The d-ata reconciliarion problem \l,as solved sins the Successive
Ordorarrc P ogrrmn-nC r\QP, dtgo. irhm o o\ ded o\ H\ Sys ;p imi.e".  Ddrd
reconciliation was able to feduce rhese gross enors and the detection ol the qrcss effor
was canied out by gross elTor derector.

1.3 GROSS ERRORDETECTION

The same 6 measurements fiar used in the sready sate deredion were adoDted in this srudv
.gr n.  Tl  e pla"r l  d.  "  ruo f -  e.J ' rofrnedlrare.oncrtdr:on$ereconpdredba.edor rr ;
cnticai value C The critical value, C was detemined based on the overa[ siqnificarl!
Ievel, o which was specified as 0.05 (e.g. 95% ot confidential inte al). and the v;he was
2.8044 from the standard nomal disrribulion wirh accumrtated probability ar 0.9989. If
the value test staiistic, ] z, j I exceeds the citicat value C, then rhis measurement is said
to contain gross €1ror. Ofieruise, this measufemen! is considered ftee of gross en'or.
Measuremenrs containing sross error are nufked underline.

(Ke/h)

LC-Le.kaee

PC Bottom 9400.81 9i39 98 9t00.8i 9139.98
PC Distillate r,89.91 617 53 589.91 617 5l
fC Bo$om 443i. i9 446t.71 448i .59 4461.71
LC Distiuate 4904.59 4890.81 4904.59 4890.82
MC Bottom 2982.89 2967.19 29E2.89 )961.+9
MC Distillate i494.36 r174.77 l:r94.16 1414.77

(Kdh)

MC-L€akAse

PC Boton 9400.81 9i86.46 9:100.83 9186.46
PC DistdlJte 637.59 622.39 637.59 622.39
LC Boftom 448i.49 4175.74 4181.49 4475.71
lC Dist i l lat€ 4904.10 4826.07 490410 1826.07
MC Bottod 2983.42 2959.09 293102 2959.09
MC Distillate .lll!.04 r47 |.62 1.170.04 147t.62

ln the Pc,leakage case, one €uor, i.e., the pC distillate flowrare was deteded. On the
other hand. LC distillate flowrate lvas detecred containing elTor in the Lcleakage case.
Similarly, fie lvlc distiilate flowrate was identified in Mcjeakage case. On the contrary,
all the distiilare slreams were deteded to contain gross error when these 

"t "u-s 
*"i"

subJected to leakage. By compadry to the three singie gross error cases, the distillate
sireams after leakage were the same as the case of muliiple gross error. Alt the gross
enors in distlllate streams werc detected either in sinele or in D ltjole situarions.

Tle din l l .  e 'uedn 01 e-ch.ol l |mn srs ioer.  f ied.o, d,r ;ng gjo".  enor uher rhe
leakage valve ofthe colunrn was opened. As menrioned earti€r, when ihe leakag€ vaLve
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was opened, th€ leakage strcam started to flow causing lhe redlrction in the distitlate
flowrat€. The effect of$oss enor caused by the leakage was detecred in the distillat€

5 CONCLUSIONS

Data validation is crucial to the succ€ss of the rca1 time optimisation. Steady state
detection had be€n applied to detect the pfocess condirion based on 6 keys neasuements.
Wtren lhe process achieved its steady siate condition, data reconciliation had been applied
to adjust and reconcile the measurcments in order to tulfil mass and energy balances.
Gross elTor detection was used to identify ihe ristlng of the goss elTor jn th€
measuf€ments. As expected, gross errof was deiected in the distillate stream when the
leakage of the distillation steam was occrmed. These results exposed the abillty of the
dala r€conciliation and gross enors in the neasurements.
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