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Abstract—This paper presents a remote dynamically re-
configurable middlebox using NetFPGA 10G development
board. The packet forwading algorithm in this middlebox
can be updated remotely through the 1Gbps Ethernet
connection without a host computer. The proposed archi-
tecture uses a customized reconfiguration controller and
the Internal Configuration Access Port (ICAP) available in
the reconfigurable device. Functional update is important
to patch design flaws and bugs, to optimize design perfor-
mance, and to cope with the changing of execution unit’s
functional requirement. Based on the experimental result,
the implemented middlebox achieved roughly 352Mbps
reconfiguration throughput.

Index Terms—Remote dynamic reconfiguration, Partial
reconfiguration, Self-reconfiguration, NetFPGA 10G, Mid-
dlebox.

I. INTRODUCTION

In reconfigurable computing, dynamic reconfiguration
is a vital feature that enables updates in the field,
improves the area utilization and allows defect compen-
sation [1]. Dynamic reconfiguration provides a solution
to update a system so it can be adapted to changes
in both functional and performance requirement. The
trend in network processing shows that high performance
requirement is needed, in the network devices especially
the throughput to cope with the growing bandwidth de-
mands [2]. Flexibility is another important requirement
of network application to update its functionalities [3]
as some of the execution requirements were unknown
during the design time. Based on these requirements,
reconfigurable device like FPGA is a good option to
implement network application as FPGA has both per-
formance advantages in ASIC solution and flexibility
advantage in software solution [2].

Most network application especially middleboxes are
required to operate in high throughput and distributed.
Additionally, middleboxes are required to remain active
and operational. The cost to update such system is very
high and this problem can be solved by utilizing the
dynamic reconfiguration feature found in the reconfig-
urable device for remote functional update. However,
the utilization of dynamic reconfiguration feature is not
straightforward and requires proper methodology in the

design process. Therefore, a good framework to effi-
ciently reconfigure the reconfigurable device is required
for network applications.

In this work, a remote dynamically reconfigurable
middlebox architecture is proposed. The proposed archi-
tecture is implemented and tested experimentally using
NetFPGA 10G development board. This works aims to
enable remote dynamic reconfiguration in NetFPGA 10G
for functional updates purposes. In order to achieve a
single-chip solution, the proposed architecture utilizes a
customized reconfiguration controller together with In-
ternal Configuration Access Port (ICAP) without relying
on a General Purpose Processor or a host computer
to handle remote dynamic reconfiguration processes.
Furthermore, the 1Gbps Ethernet port attached to the
NetFPGA 10G improved the partial bitstream transmis-
sion speed.

II. RELATED WORK

Naous et al. [4] developed the NetFPGA development
board to enable fast prototyping of network equipment.
Antichi et al. [5] presented the path to migrate existing
1G design into the new NetFPGA 10G development
board. The framework of NetFPGA is versatile and an
official web repository is provided to store the open
source projects.

By using NetFPGA, Yin et al. [6] demonstrated cus-
tomizable virtual network by using partial reconfigura-
tion. In this work, the dynamic virtual network allocation
relies on the dynamic reconfiguration feature in FPGA.
The authors used JTAG interface to load the partial
bitstream dynamically into the FPGA device. Based on
[7], loading partial bitstream with JTAG is less efficient
compared to using ICAP.

Similarly, Pontarelli et al. [8] used NetFPGA to de-
velop a FPGA-based Network Intrusion Detection Sys-
tem (NIDS). In order to improve the utilization of logic
resources, the authors exploit the dynamic reconfigu-
ration feature in FPGA. Additionally, the implemented
system is capable to work at wire speed. However, this
work also uses JTAG that is inefficient [7].
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Figure 1. Framework architecture

Lastly, Zhang et al. [9] designed a security system
using NetFPGA development board and Virtex5 device.
In the proposed work, Virtex5 device is responsible
to analyze captured attacks and forward the result to
NetFPGA for updates. However, the remote reconfigu-
ration on the NetFPGA is not standalone and requires
control from the host PC for bitstream transmission and
translation.

The works in [10], [11], [12], [13], [14] are various de-
signs and implementations of dynamically reconfigurable
platform. Most of these works provide reconfiguration at
low throughput.

III. PLATFORM OVERVIEW

Figure 1 illustrates the framework architecture for
remote dynamically reconfigurable platform. The plat-
form mainly consists of the Static Region and Par-
tial Reconfigurable Region. The Static Region includes
the Communication Manager to handle Ethernet packet
transmission and Reconfiguration Controller to handle
the loading of partial bitstream. In Xilinx FPGAs, the
Reconfiguration Port is instantiated with the ICAP primi-
tive, while the Reconfiguration Logic and Configuration
Memory are not visible to the designer. In the Partial
Reconfigurable Region, the Partial Reconfigurable Mod-
ule is linked to the Communication Manager for internal
communication.

IV. PLATFORM IMPLEMENTATION

The NetFPGA 10G development board is chosen
for implementation as the NetFPGA 10G development
board comes with a Virtex 5 reconfigurable device that
supports dynamic reconfiguration and SFP+ cages that
support gigabit Ethernet module. Additionally, NetFPGA
10G framework shown in the Figure 2 provides the
flexibility for functional extension. Explicitly, extended
functionalities can be implemented in the form of Xilinx
IP core and are integrated into the system using Xilinx
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Figure 2. NetFPGA 10G Reference Pipeline [5]
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Figure 3. Top level architecture of NetFPGA 10G (left) and rrBox
(right)

Platform Studio. IP cores are linked using the AMBA
AXI4-Stream Interconnect that allows high bandwidth
and unidirectional data transfers. Essentially, NetFPGA
10G development board is developed for the purpose of
network applications prototyping.

By using the NetFPGA 10G framework as the basis
for the implementation, Figure 3 shows the top level
block diagram of both NetFPGA 10G and rrBox, while
Figure 4 shows the functional block diagram of rrBox.
By utilizing well established Ethernet frameworks and
1Gbps Ethernet ports on NetFPGA 10G development
board, the remote reconfiguration becomes more reliable
and partial bitstream transmission is faster. In this work,
the NetFPGA 10G is functioning in standalone mode
and host computer is not required. All hardware designs
were behaviorally described using Verilog Hardware
Description Language and synthesized using Xilinx ISE
DS 13.4. Furthermore, all hardware designs were verified
using ModelSim simulation before tested experimentally
in the NetFPGA 10G development board.

A. Partial Reconfiguration Design Flow

Xilinx provides several design flows for partial recon-
figuration: modular method, difference-based method,
small bit manipulation method, early access method and
partition-based method. This research uses the partition-
based method because the other methods does not sup-
port Xilinx Virtex 5. Partition-based method is similar
but less complex than the early access method.

The major design flow in the partition-based method
includes modeling and synthesis on all functional mod-
ules, defining partial reconfigurable module, defining de-
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Figure 4. Functional block diagram of rrBox

Table I
THE LIST OF FIFOS

FIFO Name Role in the platform

A: Bit_fifo Storing extracted partial bitstream for
loading into reconfiguration port

B: In_fifo Storing received Ethernet packets for
forwarding to destination port

C: Hdr_fifo Storing the extracted packet header
informations

D: Bit_stat_fifo Storing the extraction status of partial
bitstream

E: Dst_port_fifo Storing the destination port to forward the
received packets

sign constraints and generating bitstream. The constraint
file defines the area and location of the Partial Reconfig-
urable Region, the timing constraints of the implemented
design and the location of physical pins. The PlanAhead
supports the partition-based method and provides user-
friendly graphical user interface to implement designs
with partial reconfiguration.

B. FIFOs

Table I shows the list FIFOs and their role in the
platform. These FIFOs are implemented using the on-
chip BlockRAM in the FPGA device and functioning as
the interface between blocks.

C. Header Parser

The Header Parser is responsible to parse the header of
received packets and store the results in the Hdr_fifo. The
header information extracted from the received packets
includes the source and destination MAC address, source
and destination IP address, UDP port number and seg-
ment number of bitstream packet. Besides that, this block
differentiates bitstream packet from data packet based on
the UDP port number and the unique identifier in the
packet payload. Each platform has a unique device ID
in the packet payload for identification purposes and to
enable mass deployment.

D. Bitstream Packet Handler

The Bitstream Packet Handler is responsible to ex-
tract partial bitstream from the bitstream packets. The
extracted partial bitstream is temporarily stored in the
Bit_fifo waiting for the acknowledgement before loading
into the ICAP. This block also handles the bitstream
packet verification and keeping track on the storage sta-
tus of the partial bitstream. Any failure arises in storing
the partial bitstream (due to the full FIFO) will result
in unmarked bitstream packets. A Unmarked bitstream
packet is the acknowledgement to request retransmission
from rrBox Client. Each received bitstream packets is
verified by the subsequent bitstream packet, while the
bitstream termination packet will verify the last segment
of the partial bitstream. The verification mechanism is
implemented to ensure the partial bitstream is stored and
loaded into the ICAP in a proper sequence.

E. ICAP Interface

The ICAP Interface is responsible to handle the load-
ing of the partial bitstream into the ICAP. Due to the
verification mechanism, the ICAP Interface begins by
loading the first segment of the partial bitstream into the
ICAP upon the arrival of second segment. The loading of
each partial bitstream segment takes several clock cycles
because the ICAP bus width is only 32-bit. The ICAP
Interface is essential because proper signals assertion and
control are required to load the partial bitstream to the
ICAP.

F. Header Processor

The Header Processor is responsible to process data
packets based on the header information. For example,
the Header Processor of a switch controls the data packet
forwarding based on the source and destination MAC
address in the packet. Additionally, the Header Processor
can be designed to drop the data packet based on
predefined conditions. The packet forwarding algorithm
in middlebox is implemented in the Header Processor.
The Header Processor is designed and customized based
on the application requirements.

G. Data Packet Handler

The Data Packet Handler is responsible to forward the
data packet to the Packet Manager based on the result
from the Header Processor. The Data Packet Handler
can be designed to do alteration in the data packet
based on the application requirements. Additionally, the
Data Packet Handler can be extended to support flow
managment by adding additional FIFO to store data
packets.
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H. Packet Manager

The Packet Manager acts as the coordinator for the
rrBox Core. In general, the Packet Manager manages
major processes in the rrBox Core by offloading pro-
cesses to handlers. Thus, either the Bitstream Packet
Handler or Data Packet Handler will be activated by the
Packet Manager based on the process demand. Once the
handler is activated, Packet Manager will wait for the
handler to complete the offloaded task before proceeding
to the next task. During the dynamic reconfiguration, the
Packet Manager handles data packets on behalf of the
Data Packet Handler. Additionally, the Packet Manager
is responsible to initialize the Partial Reconfigurable
Module after the remote reconfiguration process has been
completed. In order to reduce the logic resources used,
the communication protocol used for partial bitstream
transmission is the User Datagram Protocol (UDP).

I. rrBox Client

The rrBox Client is responsible to read the generated
partial bitstream and send it through the Ethernet to the
NetFPGA. Since the size of the partial bitstream is large,
the transmission of the partial bitstream to the NetFPGA
requires a number of packets. In rrBox Client, the user
has the option to choose the size of each bitstream
packet transmitted to the NetFPGA. The rrBox Client
will resend any unmarked or timed out bitstream packets
to ensure the partial bitstream is extracted and stored
properly. Upon receiving the acknowledgement in the
last segment of partial bitstream, the rrBox will send
the bitstream termination packet to the NetFPGA for
verification.

V. RESULT & DISCUSSION

Table II lists the logic resources required to enable
remote dynamic reconfiguration in the NetFPGA 10G
development board. XC5VTX240T FPGA has 37440
slices, in which only 8154 are occupied (21.78% logic
utilization). Besides that, the utilization on the Block-
RAM of the platform is approximately 23.76%. The full
system includes the rrBox Core and the fundamental
components in the NetFPGA framework, which are the
Input Arbiter, Output Queues and Ethernet Interfaces.
Therefore, there are sufficient slices and BlockRAM
available for the implementation of the Partial Recon-
figurable Module.

Based on the implemented platform, various sizes
of partial bitstreams have been generated to obtain
the platform performance. The generated partial bit-
stream sizes are 255KByte, 334KByte, 512KByte and
684KByte. The reconfiguration time for each partial
bitstream was recorded and plotted in Figure 5. It shows
that reconfiguration time increases linearly with partial
bitstream sizes. The reconfiguration throughput is around

Table II
LOGIC UTILIZATION

Logic Resources rrBox
Core

Full
System Available

Number of Slice Registers 9822 16446 149760
Number of Slice LUTs 9705 16441 149760

Number of occupied Slices 5114 8154 37440
Number of BlockRAM 14 77 324

Number of ICAP 1 1 2
Number of BUFG 2 10 32
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Figure 5. Reconfiguration time for various size of partial bitstream

350Mbps. The reconfiguration time is the total time
required for the partial bitstream transmission through
the Ethernet and the time required to load the partial
bitstream into the configuration memory through the
ICAP. In this platform, the reconfiguration frequency is
50MHz and the ICAP bus width is 32 bit. In addition, the
platform is operating at 100MHz and the AXI4-Stream
bus width is 64 bit.

Table III shows the comparison between this work and
other previous works. From the table, the reconfiguration
frequency of this work is the lowest among previous
works [10], [11], [12], [13], [14] but the achieved
reconfiguration throughput is the highest. This is be-
cause the reconfiguration controller is implemented using
custom logic instead of using General Purpose Proces-
sor. Additionally, the 1Gbps Ethernet connection speeds
up the transmission of partial bitstreams. Although the
reconfigurable device used can have impact on the re-
configuration throughput, the reconfiguration throughput
is still very dependent on the design architecture to
achieve high efficiency in transmission and the loading
of partial bitstream. In fact, achieving high reconfigura-
tion throughput and high reconfiguration efficiency are
a major milestone for the practical application of the
developed platform.

Based on the functional block diagram of rrBox,
the packet forwarding algorithms were implemented as
the Partial Reconfigurable Module. Thus, the packet
forwarding algorithm can be updated remotely from time
to time for optimization and customization purposes.
In order to test the functionalities of the implemented
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Table III
COMPARISON WITH PREVIOUS WORK

Research
work

FPGA
family

Bitstream storage
or transmission

Reconf.
frequency

(MHz)

Reconf.
bus width

(bit)

Size of partial
bitstream (KByte)

Reconf.
time (ms)

Reconf.
throughput

(Mbps)
[10] Virtex 4 DDR-SDRAM 100 32 - - 226.24
[11] Virtex 2 Pro Ethernet 100 8 200 - 80.00
[12] Virtex 2 SRAM 66 8 290.838 56.8 40.96
[13] Spartan 3 SRAM - 8 - - 35.50
[14] Spartan 3 SDRAM 65 8 335 166 16.14

Proposed Virtex 5 Ethernet 50 32 684 15.54 352.12

platform experimentally, packet forwading algorithms
such as switch, hub and loopback were loaded into
the platform remotely at run-time. The changes on the
packet forwarding algorithms can be observed in client
computers using the Wireshark packet analyzer.

The targeted practical application for the developed
platform is as a network middlebox. With remote dy-
namic reconfiguration feature proposed in the NetFPGA
10G development board, the implemented network appli-
cation can be functionally updated. Network protection
is one of the network applications that can benefit from
the remote functionalities updates as some of the security
vulnerabilities and execution requirements are not known
during the design time. Network traffic management is
another network application that requires remote dy-
namic reconfiguration. In specific, there is concept drift
issue in network traffic and the traffic classifier requires
updates to maintain its accuracy.

VI. CONCLUSION

In this paper, a remote dynamically reconfigurable
middlebox has been implemented using the NetFPGA
10G development board. The developed middlebox sup-
ports remote dynamic reconfiguration for applications
updates through the Ethernet connection. Additionally,
the developed middlebox provides flexibility to cus-
tomize and optimize the packet forwarding algorithm.
Network applications can be integrated into the platform
by modifying the Partial Reconfigurable Modules, which
are the Data Packet Handler, Header Processor and
Payload Processor. In short, the developed middlebox
aims to provide a feature to customize application after
the deployment. Lastly, the developed platform achieves
352.12Mbps of reconfiguration throughput. In near fu-
ture, several case studies in network protection and
traffic management will be included to benchmark the
developed platform.

VII. ACKNOWLEDGEMENT

This work is supported in part by the Ministry of
Science, Technology & Innovation of Malaysia (MOSTI)
under ScienceFund Grant 01-01-06-SF1222 (UTM Vote
No. 4S095).

REFERENCES

[1] A. Schallenberg, Dynamic partial self-reconfiguration: Quick
modeling, simulation, and synthesis. Germany: Suedwest-
deutscher Verlag fuer Hochschulschriften, 2010.

[2] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Tay-
lor, “Reprogrammable network packet processing on the field
programmable port extender (FPX),” in Proceedings of the
2001 ACM/SIGDA ninth international symposium on Field pro-
grammable gate arrays, Feb 2001.

[3] J. W. Lockwood, “An open platform for development of network
processing modules in reprogrammable hardware,” in IEC De-
signCon’01, Santa Clara, CA, USA, Jan 2001.

[4] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “NetFPGA:
Reusable router architecture for experimental research,” in Pro-
ceedings of the ACM workshop on Programmable routers for
extensible services of tomorrow, Aug 2008.

[5] G. Antichi, M. Shahbaz, S. Giordano, and A. Moore, “From
1G to 10G: code reuse in action,” in First Workshop on High
Performance and Programmable Networking 2013, Jun 2013.

[6] D. Yin, D. Unnikrishnan, Y. Liao, L. Gao, and R. Tessier, “Cus-
tomizing virtual networks with partial FPGA reconfiguration,”
in Proceedings of the second ACM SIGCOMM workshop on
Virtualized infrastructure systems and architectures, Sep 2010.

[7] M. N. Krifa, B. Ouni, and A. Mtibaa, “Exploring the self recon-
figuration of FPGA: Design flow, architecture and performance,”
International Journal on Computer Science and Engineering,
vol. 3, no. 4, Apr 2011.

[8] S. Pontarelli, C. Greco, E. Nobile, S. Teofili, and G. Bianchi,
“Exploiting dynamic reconfiguration for FPGA based network
intrusion detection systems,” in Field Programmable Logic and
Applications (FPL), 2010 International Conference on, Sep 2010.

[9] K. Zhang, X. Ding, K. Xiong, B. Yu, and S. Dai, “RSS: A re-
configurable security system designed on NetFPGA and Virtex5-
LX110T,” in 1st European NetFPGA Developers Workshop, Sep
2010.

[10] M. Hubner, D. Gohringer, J. Noguera, and J. Becker, “Fast
dynamic and partial reconfiguration data path with low hard-
ware overhead on Xilinx FPGAs,” in Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, Apr 2010.

[11] P. Bomel, J. Crenne, L. Ye, J.-P. Diguet, and G. Gogniat,
“Ultra-fast downloading of partial bitstreams through ethernet,”
in Architecture of Computing Systems–ARCS 2009. Springer
Berlin Heidelberg, Mar 2009.

[12] L. Braun, K. Paulsson, H. Kromer, M. Hubner, and J. Becker,
“Data path driven waveform-like reconfiguration,” in Field Pro-
grammable Logic and Applications, 2008. FPL 2008. Interna-
tional Conference on, Sep 2008.

[13] E. Cantó, M. López, F. Fons et al., “Self reconfiguration of
embedded systems mapped on Spartan-3,” in 4th International
Workshop on Reconfigurable Communication Centric SoCs (Re-
CoSoC 2008), Jul 2008.

[14] I. Gonzalez, E. Aguayo, and S. Lopez-Buedo, “Self-
reconfigurable embedded systems on low-cost FPGAs,”
Micro, IEEE, vol. 27, no. 4, Jul/Aug 2007.

413

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on September 05,2021 at 04:24:14 UTC from IEEE Xplore.  Restrictions apply. 


