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Abstract—This paper presents a remote dynamically reconfig-
urable middlebox for network protection by using NetFPGA 10G
development board. The packet forwading and other network
processing components in this middlebox can be updated re-
motely through the 1Gbps Ethernet connection without assistance
from a host computer. Functional update is important to patch
design flaws and bugs, to optimize design performance, and
to cope with the changes on the functions of execution unit.
In addition, this work demonstrates the use of the developed
plaform for network protection. The proposed architecture uses
a customized reconfiguration controller and the Internal Config-
uration Access Port available in the reconfigurable device. Based
on the experimental result, the implemented middlebox achieved
roughly 352Mbps reconfiguration throughput, which is important
for mass updating the distributed middleboxes and decrease the
devices down time during the updates.

Index Terms—Remote dynamic reconfiguration, Partial recon-
figuration, NetFPGA 10G, Middlebox, Network Protection

I. INTRODUCTION

The inefficiency of the von Neumann machine paradigm

leads to the integration of both von Neumann CPU (instruction

driven) and non-von Neumann accelerators (data driven) im-

plementation [1]. Systems-on-Chip (SoC) becomes a common

implementation solution but it lacks the flexibility to cope

with the rapid changes of functionality requirement. Thus, the

focus has shifted toward replacing hardwired accelerators with

reconfigurable devices, which offer better flexibility [2] that

leads to the emergence of reconfigurable computing.

In reconfigurable computing, dynamic reconfiguration is a

vital feature, which enables updates in the field, improves the

area utilization and allows defect compensation [3]. Dynamic

reconfiguration provides a solution to update a system so that

it can adapt to changes in both functional and performance

requirements. The applications that can possibly utilize this

feature usually require processing power as much as hardware

solutions, costly to apply update manually (that requires re-

mote update) and continuously operating in the system.

Most network applications especially on middleboxes are

required to operate in high throughput and are distributed.

Middleboxes are required to remain active and operate con-

tinuously so that their connectivity with other end nodes are

maintained and their functionality can be updated remotely.

The cost to update such system is very high when manual

reconfiguration is required and the device has to be shut

down. This problem can be solved by utilizing the dynamic

reconfiguration feature found in the reconfigurable device.

However, the utilization of dynamic reconfiguration feature is

not straightforward and requires a proper methodology in the

design process. Therefore, a good framework that is able to

efficiently perform dynamic reconfiguration on reconfigurable

devices is required for network middlebox applications.

In this work, a remote dynamically reconfigurable middle-

box architecture for network protection is proposed. The pro-

posed architecture is implemented and tested experimentally

using the NetFPGA 10G development board. The proposed

platform aims to enable remote dynamic reconfiguration in

NetFPGA 10G for functional updates purposes. The developed

platform can be updated remotely through the 1Gbps Ether-

net connection at run-time. In addition, network protection

applications are developed to demonstrate the reconfiguration

on the reconfigurable NetFPGA based middleboxes. In order

to achieve a single-chip solution, the proposed architecture

utilizes a customized reconfiguration controller together with

Internal Configuration Access Port (ICAP) without relying

on General Purpose Processor or a host computer to handle

remote dynamic reconfiguration processes.

II. RELATED WORK

Sato and Fukase [4] developed a host-based IDS using

reconfigurable hardware. The authors compared a software

IDS and hardware IDS. The authors preferred hardware im-

plementation mainly because of its high performance. Li et

al. [5] implemented IDS using reconfigurable hardware to

achieve higher processing speed and efficiency. This work

uses Content-addressable Memory (CAM) to implement the

matching unit and the performance has been significantly

improved using the reconfigurable hardware. Distributed IDS

has been proposed by Tummala et al. [6] in high-speed

networks. In this work, the reconfigurable hardware offers

higher degree of parallelism and flexibility for different data

widths. The authors supported the fact that FPGA devices have

advantages such as dynamic reconfiguration, low development

cost, high speed, high scalability and short time to market.

Naous et al. [7] developed the NetFPGA development board

to enable fast prototyping of network equipment. Antichi

et al. [8] presented the path to migrate existing 1G design

into the NetFPGA 10G development board. The framework

of NetFPGA is versatile and an official web repository is

provided to store the open source projects. By using the
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NetFPGA, Yin et al. [9] demonstrated customizable virtual

network by using partial reconfiguration. In this work, the

dynamic virtual network allocation relies on the dynamic

reconfiguration feature in the FPGA. This work used the JTAG

interface to load the partial bitstream dynamically into the

FPGA device. Based on [10], loading partial bitstream with

JTAG is less efficient compared when using ICAP. Similarly,

Pontarelli et al. [11] used NetFPGA to develop a FPGA-

based Network Intrusion Detection System (NIDS). In order to

improve the utilization of logic resources, the authors exploit

the dynamic reconfiguration feature in FPGA. Additionally,

the implemented system is capable to work at wire speed.

However, this work also uses JTAG that is inefficient [10].

Zhang et al. [12] designed a security system using NetFPGA

development board and Virtex5 device. In the work in [12], the

Virtex5 device is used to analyze captured malicious packets

and forward the results to NetFPGA for updates. However, the

remote reconfiguration on the NetFPGA requires control from

the host PC for bitstream transmission and translation.

III. PLATFORM IMPLEMENTATION

The NetFPGA 10G development board is chosen as the

implementation platform because the NetFPGA 10G devel-

opment board comes with a Virtex 5 reconfigurable device

that supports dynamic reconfiguration and SFP+ cages that

support gigabit Ethernet module. Essentially, NetFPGA 10G

development board is developed for the purpose of net-

work applications prototyping. Additionally, NetFPGA 10G

framework shown in the Figure 1 provides the flexibility for

functional extension. Explicitly, extended functionalities are

implemented in the form of Xilinx IP core and are integrated

into the system using Xilinx Platform Studio. AMBA AXI4-

Stream Interconnect links IP cores through high bandwidth

unidirectional bus.

Figure 2 shows the top level block diagram of both NetF-

PGA 10G and rrBox, where rrBox is the core of the proposed

reconfigurable middlebox. Figure 3 shows the functional block

diagram of rrBox. In this work, the NetFPGA 10G is func-

tioning in standalone mode and host computer is not required

when using the proposed platform. All hardware designs were

behaviorally described using Verilog Hardware Description

Language and synthesized using Xilinx ISE DS 13.4. Fur-

thermore, all hardware designs were verified using ModelSim

simulation before tested experimentally in the NetFPGA 10G

development board.

A. Partial Reconfiguration Design Flow

Xilinx provides several design flows for partial reconfigura-

tion: Modular Method, Difference-based Method, Small Bit

Manipulation Method, Early Access Method and Partition-

based Method. This research uses the Partition-based Method

because the other methods does not support Xilinx Virtex

5. The Partition-based Method is similar but less complex

compared to the Early Access Method. The major design

flow in the Partition-based Method includes modeling and

Figure 1. NetFPGA 10G Reference Pipeline [8]

Figure 2. Top level architecture of NetFPGA 10G (left) and rrBox (right)

synthesis on all functional modules, defining partial recon-

figurable module, defining design constraints and generating

bitstream. The constraint file defines the area and location of

the Partial Reconfigurable Region, the timing constraints of

the implemented design and the location of physical pins.

B. FIFOs

Table I shows the list FIFOs and their role in the platform.

These FIFOs are implemented using the on-chip BlockRAM

in the FPGA device and functioning as the interface between

blocks.

C. Header Parser

The Header Parser is responsible to parse the header of re-

ceived packets and store the results in the Hdr_fifo. The header

information extracted from the received packets includes the

source and destination MAC addresses, source and destination

IP addresses, UDP port number and segment number of bit-

stream packet. Besides that, this block differentiates bitstream

packet from data packet based on the UDP port number and

the unique identifier in the packet payload. Each platform has

Table I
THE LIST OF FIFOS IN FIGURE 3

FIFO Name Role in the platform

A: Bit_fifo
Storing extracted partial bitstream for loading
into reconfiguration port

B: In_fifo
Storing received Ethernet packets for forwarding
to destination port

C: Hdr_fifo Storing the extracted packet header informations

D: Bit_stat_fifo Storing the extraction status of partial bitstream

E: Hdr_proc_fifo Storing the result from Header Processor

F: Pl_proc_fifo Storing the result from Payload Processor
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Figure 3. Functional block diagram of rrBox

a unique device ID in the packet payload for identification

purposes and to enable mass deployment.

D. Bitstream Packet Handler

The Bitstream Packet Handler is responsible to extract

partial bitstream from the bitstream packets. The extracted

partial bitstream is temporarily stored in the Bit_fifo to wait

for the acknowledgement before loading into the ICAP. This

block also handles the bitstream packet verification and keeps

track on the storage status of the partial bitstream. Any failure

arises in storing the partial bitstream (due to the full FIFO) will

result in unmarked bitstream packets. An unmarked bitstream

packet is the acknowledgement to request resending from the

rrBox Client. Each received bitstream packet is verified by

the subsequent bitstream packet, where the arrival of (N+1)th

bitstream packet will verifies the Nth segment of the partial

bitstream, while the bitstream termination packet will verify

the last segment of the partial bitstream. The verification

mechanism is implemented to ensure the partial bitstream is

stored and loaded into the ICAP in a proper sequence.

E. ICAP Interface

The ICAP Interface is responsible to handle the loading of

the partial bitstream into the ICAP. Due to the verification

mechanism in use, the ICAP Interface begins by loading the

first segment of the partial bitstream into the ICAP upon

the arrival of second segment. The loading of each partial

bitstream segment takes several clock cycles because the ICAP

bus width is only 32-bit. The ICAP Interface is essential

because proper signals assertion and control are required to

load the partial bitstream to the ICAP.

F. Packet Manager

The Packet Manager act as the coordinator for the rrBox

Core. In general, the Packet Manager manages major processes

in the rrBox Core by offloading processes to separate handlers.

The Packet Manager activates either the Bitstream Packet

Handler or the Data Packet Handler based on the type of

packet received. Once the handler is activated, the Packet

Manager will wait for the handler to complete the offloaded

task before proceeding to the next task. During the dynamic

reconfiguration, the Packet Manager handles the data packets

on behalf of the Data Packet Handler. Additionally, the Packet

Manager is responsible to initialize the Partial Reconfigurable

Module after the remote reconfiguration process has been

completed. In order to reduce the logic resources used, the

communication protocol used for partial bitstream transmis-

sion is done using the User Datagram Protocol (UDP).

G. rrBox Client

The rrBox Client is responsible to read the generated partial

bitstream and send it through the Ethernet to the NetFPGA.

Since the size of the partial bitstream is large, the transmission

of the partial bitstream to the NetFPGA requires several

packets. In rrBox Client, the user can specify the size of

each bitstream packet transmitted to the NetFPGA. The rrBox

Client will resend any unmarked or timed out bitstream packets

to ensure the partial bitstream is extracted and stored properly.

Upon receiving the acknowledgement in the last segment

of the partial bitstream, the rrBox will send the bitstream

termination packet to the NetFPGA for verification.

H. Partial Reconfigurable Module

The Partial Reconfigurable Module consists of Data Packet

Handler, Payload Processor, Header Processor and several

FIFOs. Being located at the Partial Reconfiguration Region,

all components in Partial Reconfiguration Module can be

updated from time to time. The Partial Reconfigurable Module

can be designed or modified based on the requirements from

application.
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Figure 4. Conceptual view for designing PRM

1) Data Packet Handler: Data Packet Handler is responsi-

ble to forward data packets to Packet Manager based on the

result from the Header Processor. The Data Packet Handler

can be designed to do manipulation on data field based

on specific application requirements. Additionally, the Data

Packet Handler can be extended to support flow management

by adding additional FIFO to store data packets. Lastly, the

Header Processor can be designed to drop the data packet

based on the specific preset conditions.

2) Header Processor: The Header Processor is responsible

to process data packet based on header information. For

example, the Header Processor for a switch controls data

packet forwarding based on the source and destination MAC

addresses in a packet. In fact, the packet forwarding algorithm

in middlebox is implemented in the Header Processor.

3) Payload Processor: The Payload Processor is respon-

sible to process data packet based on the packet payload.

The Payload Processor is important to implement Deep Packet

Inspection or Information Extraction for network applications

such as intrusion detection system (IDS) and intrusion preven-

tion systems (IPS). The Payload Processor can be customized

based on different network application requirements.

IV. NETWORK PROTECTION IMPLEMENTATION

During the development of a certain network application,

the implementation is focused on the design of Partial Recon-

figurable Module as shown in Figure 4. For every different

type of network application, the design and implementation of

Payload Processor, Header Processor and Data Packet Handler

may not be the same. Specifically, not all network applications

require a Payload Processor or a Header Processor.

A. Port-based Firewall

In the OSI model, transport layer grants end-to-end commu-

nication services for applications within a network. Port-based

firewall filters packets based on the TCP or UDP port number.

Therefore, filtering packets based on its port number can

effectively limits the communication service within a network

as most of the services has been assigned with specific port

number according to RFC 1700. Figure 5 shows the functional

block diagram of a port-based firewall when implemented in

Figure 5. Functional block diagram of port-based firewall

the rrBox. The Header Processor consists of a Ethernet Parser

to parse the header of packets, CAM for output port lookup

based on the MAC address and BRAM for transport layer port

lookup. In the functional block diagram, the Payload Processor

is absent because a port-based firewalls process only data

packets based on the packet header. The Data Packet Handler

is responsible to forward or dropped data packets based on the

result from the CAM lookup and TCP or UDP port lookup.

With remote dynamic reconfiguration, the transport layer port

lookup can be updated from time to time.

B. Stateless Network-based Intrusion Prevention System

Network-based intrusion prevention systems (NIPS) inspect

the entire network to identify malicious activity and attemp

to block it. Figure 6 shows the functional block diagram of a

stateless network-based IPS when implemented in the rrBox.

The NIPS uses signature-based detection, where it examines

packets in the network to ensure the packets do not contain any

pre-configured signatures. Thus, the implemented NIPS uses

CAM-based string matching to examine the payload of the

data packets. Figure 7 shows the architecture of CAM-based

string matching for the NIPS. In the functional block diagram,

the Header Processor consists of Ethernet Parser to parse the

Ethernet frame and CAM for output port lookup based on

the MAC address in the packet. The Payload Processor is

made up of Signature Match, which are blocks of CAM-based

string matching unit. The Data Packet Handler is responsible

to forward or dropped the data packets based on the result from

the Payload Processor and Header Processor. With remote

dynamic reconfiguration, the signatures in the string matching

block can be updated from time to time.
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Figure 6. Functional block diagram of stateless NIPS

Figure 7. Architecture of CAM-based string matching

V. RESULT & DISCUSSION

A. rrBox Platform

Table II lists the logic resources required to enable remote

dynamic reconfiguration in the NetFPGA 10G development

board. In XC5VTX240T FPGA, there are 37440 slices, in

which only 7137 is occupied (19% logic utilization) for the

platform. Besides that, the utilization on the BlockRAM of the

platform is approximately 23%. The full system includes the

rrBox Core and other fundamental components in the NetF-

PGA framework (Input Arbiter, Output Queues and Ethernet

Interfaces). Therefore, sufficient slices and BlockRAM are

available for the implementation of the Partial Reconfigurable

Module.

Table II
LOGIC UTILIZATION

Logic Resources rrBox Core Full System Available

Number of Slice Registers 9672 16296 149760
Number of Slice LUTs 9640 16376 149760

Number of occupied Slices 4097 7137 37440
Number of BlockRAM 10 73 324

Number of BUFG 2 10 32

Figure 8. Reconfiguration time for various size of partial bitstream

Based on the implemented platform, various partial bit-

streams sizes have been generated to obtain the platform per-

formance. The generated partial bitstream sizes are 255KByte,

334KByte, 512KByte and 684KByte. These partial birstreams

are generated on various area sizes of the Partial Recon-

figuration Region. The reconfiguration time for each partial

bitstream was recorded and plotted in graph depicted in

Figure 8. From the graph, the linearity of the plotted line

shows the consistency in reconfiguration throughput, which

is around 350Mbps. The reconfiguration time shown in the

graph includes the time required for the partial bitstream

transmission through the Ethernet and the time required to load

the partial bitstream into the configuration memory through the

ICAP. In this platform, the reconfiguration frequency used is

50MHz and the ICAP bus width is 32 bit. In addition, the

platform is operating at 100MHz and the AXI4-Stream bus

width is 64 bit.

Table III shows the comparison between this work and other

previous works. From the table, the reconfiguration frequency

of this work is lower than [13], [14], [15], [16], [17] but

the achieved reconfiguration throughput is the highest. This

is because the reconfiguration controller is implemented using

custom logics instead of using General Purpose Processor. Ad-

ditionally, the 1Gbps Ethernet connection speeds up the partial

bitstreams transmission. Although the reconfigurable device

can affect the reconfiguration throughput, the reconfiguration

throughput is still very dependent on the design architecture

to achieve high efficiency in transmission of partial bitstream

and the loading of partial bitstream. In fact, achieving high
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Table III
COMPARISON WITH PREVIOUS WORK

Research
work

FPGA
family

Bitstream storage
or transmission

Reconfiguration
frequency (MHz)

Reconfiguration
bus width (bit)

Size of partial
bitstream (KByte)

Reconfiguration
time (ms)

Reconfiguration
throughput
(Mbps)

[13] Virtex 4 DDR-SDRAM 100 32 - - 226.24

[14] Virtex 2 Pro Ethernet 100 8 200 - 80.00

[15] Virtex 2 SRAM 66 8 290.838 56.8 40.96

[16] Spartan 3 SRAM - 8 - - 35.50

[17] Spartan 3 SDRAM 65 8 335 166 16.14

Proposed Virtex 5 Ethernet 50 32 684 15.54 352.12

Table IV
LOGIC UTILIZATION FOR NETWORK PROTECTION

Logic Resources
Port-based
Firewall

Stateless
NIPS

Available

Number of Slice Registers 16320 >16566 149760

Number of Slice LUTs 16416 >16594 149760

Number of occupied Slices 7159 >7287 37440

Number of BlockRAM 77 73 324

reconfiguration throughput and high reconfiguration efficiency

are a major milestone for the practical application of the

developed platform.

Based on the functional block diagram of rrBox, the packet

forwarding algorithms were implemented as a module in the

Partial Reconfigurable Region. Thus, the packet forwarding

algorithm can be updated remotely from time to time for

different optimization and customization purposes. In order

to verify the functionalities of the implemented platform,

several packet forwading algorithms such as switch, hub and

loopback were loaded into the platform remotely at run-time.

The changes on the packet forwarding algorithms can be

observed in client computers by using the packet injection

and Wireshark packet analyzer.

B. Network Protection

Table IV lists the logic resources required to implement the

port-based firewall and the stateless NIPS. The implementation

of port-based firewall requires additional 22 slices and 4

BlockRAM added into the remote dynamically reconfigurable

middlebox. This is because the port-based firewall requires

additional BlockRAMs for the transport layer port lookup.

However, the implementation of the stateless NIPS does not

require any additional BlockRAM as the CAM-based string

matching only requires slices for implementation. In CAM-

based string matching, the slices utilization increase with the

number of signatures.

In order to test the functionality of the implemented ap-

plication experimentally, the developed platform was setup as

in Figure 9. From the figure, there are 3 client computers

connected to the developed platform and PC1 is injecting

data packets to PC2, while PC3 dynamically reconfigure the

developed platform. The test on port-based firewall involved

packets injection to both blacklisted port and whitelisted port

in PC2. As for the test on stateless NIPS, packet containing

Figure 9. Platform setup for experimental test
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Figure 10. Data packets captured to test port-based firewall

signature and the ones without are sent to PC2. During the

test, PC2 captures the data packets using Wireshark packet

analyzer while PC3 dynamically reconfigures the platform

with network protection extension. Figure 10 shows the graph

of data packets captured in PC2 during the test of port-based

firewall. Figure 11 shows the graph for the stateless NIPS.

From the graphs, initially all data packets are allowed to pass

through the developed platform with only packet forwarding

capability. After the developed platform has been loaded with

network protection extension, data packets that violate the

preferred policy are dropped and not forwarded to destination

computer.

The developed platform offers a number of benefits to

middleboxes through remote dynamic reconfiguration. First,
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Figure 11. Data packets captured to test stateless NIPS

remote dynamic reconfiguration enables functional extension,

where the platform is extended with network protection fea-

tures at run-time. Second, remote dynamic reconfiguration

allows the applications to adapt with the changes in func-

tionality, where the configuration and policy in the platform

can be updated from time to time. Third, remote dynamic

reconfiguration provides flexibility to application for cus-

tomization and optimization. For example, remote dynamic

reconfiguration allows the implemented stateless NIPS to be

optimized with various type of string matching algorithm,

which can either CAM-based, hash-based or finite automata

based. Lastly, the developed platform enables functional patch

through remote dynamic reconfiguration. In essence, remote

dynamic reconfiguration allows the application functionality

to be extended, updated, optimized, customized or patched

after the platform has been mass deployed.

Other network protection applications can also benefit from

the remote functionality updates as part of the security vulner-

abilities and execution requirements are hardly known during

the application design time. Network traffic management is

another network application that can benefit from remote

dynamic reconfiguration as network traffic exhibit concept

drift and traffic classifier requires regular updates to maintain

its accuracy.

VI. CONCLUSION

In this paper, a remote dynamically reconfigurable middle-

box has been implemented using the NetFPGA 10G develop-

ment board. The developed middlebox is standalone and sup-

ports remote dynamic reconfiguration for applications updates

through the Ethernet connection. Additionally, the developed

middlebox provides flexibility to customize and optimize the

packet forwarding algorithm. Network applications can be

integrated into the platform by modifying the Partial Recon-

figurable Modules, which are the Data Packet Handler, Header

Processor and Payload Processor. Similarly, the demonstration

of the developed plaform to implement network protection

application is achieved by extending the network processing

functionality in the Partial Reconfigurable Module. The devel-

oped middlebox is aimed to provide the feature to customize

application after the deployment. The developed platform

achieves 352.12Mbps of reconfiguration throughput, which is

important for mass updating the distributed middleboxes and

decrease the devices down time during the updates. In near

future, traffic management application will be implemented

using the developed platform for demonstration in practical

applications.
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