



Available online at www.sciencedirect.com



Procedia

Energy

Energy Procedia 75 (2015) 3142 - 3147

# The 7<sup>th</sup> International Conference on Applied Energy – ICAE2015

# Effect of Delta Temperature Minimum Contribution in Obtaining an Operable and Flexible Heat Exchanger Network

# Suraya Hanim Abu Bakar, Mohd. Kamaruddin Abd. Hamid\*, Sharifah Rafidah Wan Alwi, Zainuddin Abdul Manan

Process Systems Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

#### Abstract

This paper presents the control structure decision making for heat exchanger networks (*HENs*) to obtain operable and flexible network. Delta temperature minimum ( $\Delta T_{min}$ ) contribution is considered in this study. Several studies have been done to determine the effect of  $\Delta T_{min}$ -contribution on the annual cost. Usually, *HENs* designed without consider controllability analysis and control structure decision making. In control structure decision making analysis are done to already designed *HEN*. Design and controllability analysis for HEN are done seperately. Therefore, there are still lacks of studies on how the  $\Delta T_{min}$ -contribution effects the controllability and control structure decision making. Optimal  $\Delta T_{min}$  selection is important decision to make in the early stage to avoid inflexible and inoperable heat exchanger networks. The question that needs to be answerd here is how to determine the optimal value of  $\Delta T_{min}$  that will have better operating conditions that satisfy process design (*HEN*), controllability and as well as economy. In this study, this problem will be formulated as a mathematical programming (optimization with constraints) and solved by decomposing it into four hierarchiacal stages: (i) target selection, (ii) *HEN* design analysis, (iii) controllability analysis, and (iv) optimal selection and verification. A case study plant was selected as a case study. Small value of  $\Delta T_{min}$  was first implemented and will gradually be increased to see the effect on the operability and flexibility of a case study.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of Applied Energy Innovation Institute

Keywords: Operable and flexible heat exchanger networks; delta temperature minimum; process design; controllability

\* Corresponding author. Tel.: +607-5535517; fax: +607-553-6165. *E-mail address:* kamaruddin@cheme.utm.my

#### 1. Introduction

Heat exchanger networks (*HENs*) are important in chemical processing plant. The purpose of the *HEN* is to heat up cold streams with hot streams that need to be cooled down or vice versa with less cold and hot utilities. It is an arrangement of several heat exchangers to reduce external energy usage in the plant. Optimum design *HENs* is where the network able to maximize energy recovery with small capital cost design Therefore, it is important to synthesis an optimum *HENs* with the minimum operating and capital costs. Linhoff et al. have started developed Pinch Technology to optimize energy recovery [1].

In designing heat exchanger network, one important parameter that needs to be considered is a delta temperature minimum ( $\Delta T_{min}$ ).  $\Delta T_{min}$  is used in designing HEN in order to balance the trade-off between energy and capital cost. This design target is used to balance energy-capital trade-off. Several researchers have recommended that in order to optimize the HEN design, it is need to target and design the optimal cost of *HEN* using  $\Delta T_{min}$  [2]. Abdullahi has studied  $\Delta T_{min}$  contribution in which to give lower and accurate total minimum of heat transfer design, it is a common idea to select the value of  $\Delta T_{min}$  in order to balance the operational and capital cost.  $\Delta T_{min}$  is a trade-off between operational and capital cost. Sun et al. have investigated on the effect different  $\Delta T_{min}$  on capital and operating cost for HEN with multiple utilities and different types of heat exchangers [3]. Smaller value of  $\Delta T_{min}$  will minimize the operating cost and maximize the capital cost. On the other hand, larger value of  $\Delta T_{min}$  will maximize the operating cost and minimize the capital cost [4]. If one selects a smaller value of  $\Delta T_{min}$ , it indicates that lots of energy can be recovered, however it will require a large heat exchanger area. If one selects a larger value  $\Delta T_{min}$ , the energy recovery will be less but the heat exchanger area will be smaller [5]. There are still lacks of studies have been conducted on how the  $\Delta T_{min}$  will effect the controllability of the designed heat exchanger networks (*HENs*). Optimal  $\Delta T_{min}$  selection is an important decision to make in the early stage of design to avoid inflexible and inoperable HENs.

The question that needs to be answered here is how to determine the optimal value of  $\Delta T_{min}$  that will have better operating conditions that satisfy process design (*HENs*), controllability and as well as economy. This paper presents control structure HEN design based on selection of  $\Delta T_{min}$  value in order to obtain operable and flexible *HENs*. Therefore, here control structure design decision making task is implement in this research. The control structure decision task are adapted from Skogested [6].

#### 2. Methodology

#### 2.1 Problem statement

Multi-objectives function to optimization design and control problem formulated as below based on generic optimization by Russel [7] and been explain in [8].

$$\max \left( J \right) = w_{1,1} \left( P_{1,1} \right) + w_{2,1} \left( P_{2,1} \right) + w_{2,2} \left( \frac{1}{P_{2,2}} \right) + w_{3,1} \left( \frac{1}{P_{3,1}} \right) + w_{3,2} \left( \frac{1}{P_{3,2}} \right)$$
(1)

Where there are three design optimization objectives function,  $P_{1,1}$  define as energy recovery,  $P_{3,1}$  define as operating cost and  $P_{3,2}$  define as capital cost. Another two are categorize as control optimization objective function  $P_{2,1}$  is define as HEN flexibility and  $P_{2,2}$  is define as *HEN* sensitivity. w <sub>i,j</sub> where i=1-3, and j=1,2 is the weightage of each criteria. Weightage is use to give preference to any criteria than other criteria. The weightage value range can be 0.1 to 1. If all criteria are equally important, the value can be 1.

## 2.2 Case Study

An example case study is used to implement the method. This example case are from Alwi and Manan [9]

| Stream | Supply<br>temp. | Target<br>temp. | Heat capacity<br>flowrate, FCp(kW/°C) | Enthalpy, ∆H<br>(kW) |
|--------|-----------------|-----------------|---------------------------------------|----------------------|
| H1     | 300             | 160             | 3                                     | -420                 |
| H2     | 230             | 120             | 7                                     | -770                 |
| H3     | 160             | 60              | 2                                     | -200                 |
| C1     | 40              | 230             | 2                                     | 380                  |
| C2     | 100             | 230             | 4                                     | 520                  |
| C3     | 230             | 300             | 3                                     | 210                  |

Table 1. A case study is used to implement the method

## 2.3 Stage 1: Target Selection

- i. Data from the process flow diagram is extracted. The needed data is stream flowrate (F), heat capacity  $(C_p)$ , supply temperature  $(T_s)$  and target temperature  $(T_l)$ .
- ii. Select  $\Delta T_{min}$ . For this case study  $\Delta T_{min}$ = 5°C is first selected. Then continue to next step which is to develop Problem Table Algorithm (*PTA*) diagram.
- iii. Develop Problem Table Algorithm (PTA) based on Klemes et al., 2010.
- iv. Construct Composite Curve (*CC*) and Grid Diagram (*GD*). From the grid diagram, duty for each heat exchanger can be identified and temperatures (in and out) can be calculated. All the information from Stage 1 is then transferred to Stage 2.

# 2.4 Stage 2 Heat Exchanger Network Analysis

- i. From the information obtained in Stage 1, *HENs* will be constructed. Temperatures in and out that were calculated in stage 1 will be inserted to the process simulator such as Aspen *HYSYS*. In this step, only feasible *HEN* candidates will proceed to the next stage. If the designed *HEN* is not feasible based on the selected value of  $\Delta T_{min}$ , for example has problem with the warning such as "Ft correction factor is low", then, a new value of  $\Delta T_{min}$  is selected in Stage 1. For *HEN* designed at  $\Delta T_{min} = 5$  °C, there are six heat exchangers. However, after transferred all the information into Aspen *HYSYS*, it showed a warning of "Ft correction factor is low". Therefore, *HEN* designed at  $\Delta T_{min} = 5$  °C is not feasible. Then, a new value of  $\Delta T_{min}$  is selected in step 1.2
- ii. For this case study, there are 8 different values of  $\Delta T_{min}$  are being tested,  $\Delta T_{min}$ = 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C

# 2.5 Stage 3: Controllability Analysis

In controllability analysis, selection of manipulated variable and degree of freedom analysis are done adapted from Skogested[6]. This study considers controllability analysis in steady state mode. Optimization degree of freedom,  $N_{opt}$  is degrees of freedom that effect controllability objective function. Manipulated variables,  $N_m$  are identified. Manipulated variables usually are variables that can be adjusted using mechanical device such as valve.  $N_0$  is the number variables that not effect to the controllability objective function.  $N_0$  is manipulated input and controlled output variables that have no effect to controllability objective function. See Eq. 2 After the variables are obtained, next is to proceed to these analysis.

$$\dot{N}_{opt} = N_m - N_0 \tag{2}$$

Manipulated variables that effect to the objective function:

*HEN* at  $\Delta T_{min}$ = 35°C are feed flowrate for  $H_1$ ,  $H_2$ ,  $C_1$ ,  $C_2$ *HEN* at  $\Delta T_{min}$ = 40°C are feed flowrate for  $H_1$ ,  $H_2$ ,  $C_1$ ,  $C_2$ Control variables that effect to the objective function: *HEN* at  $\Delta T_{min}$ = 35°C are temperature for  $H_{1output}$ ,  $H_{2output}$ ,  $C_{1output}$ ,  $C_{2output}$ *HEN* at  $\Delta T_{min}$ = 40°C are temperature for  $H_{1output}$ ,  $H_{2output}$ ,  $C_{2output}$ 

In this case study it is consider as open-loop control strategy with steady state optimization. Selfoptimizing strategy is used in this case study.

- i. Flexibility analysis: *HEN* candidates that passed Stage 2 will be further analyzed in terms of flexibility. The idea is to analyze how flexible the designed *HEN* when changes manipulated variable. In this study, is the feed flowrate. The feed flowrate for each stream of the *HENs* candidates will be increase. Heat exchangers condition in the network will be monitored. If the heat exchanger is not showing any warning, feed flowrate will be increased until the warning from process simulator is shown. The highest tolerable feed flowrate is noted and percentage flowrate increments will be calculated. Average percentage tolerable manipulated variables for a *HEN* will be as calculated.
- ii. Sensitivity analysis: In this analysis, *HEN* candidates will also be analyzed in terms of sensitivity with respect to changes input variable (disturbances). In this case feed temperatures are consider as disturbance. In this step, feed temperature for each stream will be changed about  $\pm 1\%$  or less from the initial temperature and the status heat exchangers in the network in the Aspen *HYSYS* environment will be monitored.
- iii. Controller structure analysis: Same manipulated variable in flexibility analysis is used in this analysis. Here, controller structure for feasible *HEN* is selected by calculating derivative value of controlled variable with respect to manipulated variable. The highest derivative value of controlled variables with respect of disturbance will be the best pairing. Finally, process gain to determine the best pairing control structure for *HEN* design.

## 2.6 Stage 4: Optimal Selection and Verifications

*HEN* candidates that passed through Stage 3 will be analysed in terms of capital and operating costs in this step. The *HEN* candidate with the lowest capital and operating costs will be selected as the best/optimal design for *HEN*. The value of  $\Delta T_{min}$  used to design the optimal *HEN* is the optimal one that satisfies process design, controllability, and economy criteria. To verify control aspect, relative gain array (*RGA*) is done to determine the interaction of control structure pairing with others.

## 3. Results and Discussions

Eight candidates have been analysed using this method. After stage 2, only 2 candidates pass *HEN* analysis (feasibility test) which are  $\Delta T_{min}$ = 35°C, 40°C. These candidates are then being analysis the degree of freedom of each *HEN* design. Table 2 shows result summary of the Stage1 to Stage 4. Fig. 1 shows control structure of each *HEN* candidates.

Table 2. HEN design results at different ⊿Tmin.

| $\Delta T_{min}$ (°C)  | 5    | 10   | 15   | 20  | 25  | 30  | 35    | 40    |
|------------------------|------|------|------|-----|-----|-----|-------|-------|
| Energy                 | 1080 | 1050 | 1020 | 990 | 960 | 930 | 900   | 870   |
| Recovery (kW)          |      |      |      |     |     |     |       |       |
| Utility energy<br>(kW) | 340  | 400  | 460  | 520 | 580 | 640 | 760   | 760   |
| Feasible               | No   | No   | No   | No  | No  | No  | Yes   | Yes   |
| Flexibility (%)        | -    | -    | -    | -   | -   | -   | 51.55 | 53.36 |
| Sensitivity (%)        | -    | -    | -    | -   | -   | -   | 11.14 | 10.64 |





Fig. 1. Control structured Design *HEN* at different  $\Delta T_{min}$  (a)  $\Delta T_{min}$ = 35°C (b)  $\Delta T_{min}$ = 40°C

This paper presents on the control structure decision making to obtain operable and heat exchanger network. Delta temperature minimum ( $\Delta T_{min}$ ) contribution in order to obtain the best operable and flexible *HENs*. Optimal  $\Delta T_{min}$  selection is important decision to make in the early stage to avoid inflexible and inoperable heat exchanger networks. The selection of the optimal  $\Delta T_{min}$  can be obtained with the help the developed methodology for designing flexible and operable *HENs*. Accordingly, the problem is formulated as a mathematical programming (optimization with constraints) and solved by decomposing it into four hierarchiacal stages: (i) target selection, (ii) *HEN* design analysis, (iii) controllability analysis, and (iv) optimal selection and verification. *HEN* design is considered optimally operated when the target temperatures are satisfied at steady state, the utility cost is minimized and the dynamic behavior and control aspects are best satisfied. Two different *HEN* design with control pairing are obtain in this paper based on this methodology.

#### Acknowledgements

The financial support from Universiti Teknologi Malaysia (RUGS Tier 1 Q.J130000.2509.07H39) and Ministry of Education of Malaysia FRGS (R.J130000.7809.4F435) are highly acknowledged.

## References

[1] Linnhoff B, Flower JR. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE Journal. 1978;24:633-42.

[2] Linnhoff B, Ahmad S. Cost optimum heat exchanger network minimum energy and capital using simple models for capital cost. Computers & Chemical Engineering. 1990;14:729-50.

[3] Sun KN, Wan Alwi SR, Manan ZA. Heat exchanger network cost optimization considering multiple utilities and different types of heat exchangers. Computers & Chemical Engineering. 2013;49:194-204.

[4] Shenoy UV. Heat Exchanger Network Synthesis:: Process Optimization by Energy and Resource Analysis Gulf Professional Publishing 1995.

[5] Linnhoff B, Mason DR, Wardle I. Understanding heat exchanger networks. Computers & Chemical Engineering. 1979;3:295-302.

[6] Skogestad S. Control structure design for complete chemical plants. Computers & Chemical Engineering. 2004;28:219-34.

[7] Russel BM, Henriksen JP, Jørgensen SB, Gani R. Integration of design and control through model analysis. Computers & Chemical Engineering. 2002;26:213-25.

[8] Suraya Hanim AB, Mohd. Kamaruddin AH, Wan Alwi SR, Manan ZA. Flexible and Operable Heat Exchanger Network. Chemical Engineering Transactions. 2013;32:6.

[9] Wan Alwi SR, Manan ZA. STEP—A new graphical tool for simultaneous targeting and design of a heat exchanger network. Chemical Engineering Journal. 2010;162:106-21.