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Abstract. Buckling of rectangular plates of variable thickness resting in elastic foundation is 

analysed using a quintic spline approximation technique. The thickness of the plate varies in 

the direction of one edge and the variations are assumed to be linear, exponential and 

sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and 

the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed 

parametric studies are made with different boundary conditions and the results are presented 

through the diagram and discussed.   

 

1.    Introduction 

The buckling characteristics of non-uniform plates are utilized in many areas including aerospace 

engineering, engineering design and earthquake resistant structures. Significant studies have been made by ‘[1-

3]’ on buckling of plates of variable thickness. A spline function approximation was also used for such a study 

by ‘[4-7]’ .The plate was homogenous with sinusoidal variation in thickness in the direction parallel to one edge. 

In the study of ‘[8]’ a circular plate was considered with the plate thickness varying along the radius and the 

method of solution used a Frobenius series approximation. ‘[9]’ studied on buckling loads of braced beam 

resting on elastic foundation using analytical method. However, not much information is available on buckling 

of plates of variable thickness resting on elastic foundation. 

In the present work the buckling of thin rectangular plate of varying thickness, resting on elastic foundation 

is studied using spline function approximation technique. The plate is fully attached to the foundation. The plate 

thickness varies in the direction of an edge. Linear, exponential and sinusoidal variations in thickness are all 

considered in one formulation. 

The solution of the differential equation characterising the deflection is assumed in a separable form. A 

closed form solution is generally not possible. A spline function numerical technique is used, exploiting the 

attractive features as excellent interpolating and approximation functions. ‘[10]’ first presented it as an efficient 

tool to solve two-point boundary value problems, bringing out its computational superiority to other schemes 

like Hermite interpolation technique. 

A pair of opposite edges of the rectangular plate are subjected to compressive uniform load. Two cases of 

boundary conditions are considered for these edges: Clamped-Clamped and Clamped- Simply supported. The 

other edges are simply supported. The deflection equation yields an eigenvalue problem solving which the 

critical loads and the modes shapes of buckling are obtained.  

Parametric studies of the variation of the critical load with respect to aspect ratio, foundation coefficient and 

variation of thickness of the plate are made. Selected mode shapes of buckling are also presented.  
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2.    Formulation of the Problem 

Consider a thin rectangular plate bounded by 0x  , x a , 0y   and y b  as shown in ‘figure 1’. The plate is 

subjected to an in-plane compressive force xN  acting on and normal to the edge 0x   and x a . Its transverse 

deflection ( , )w x y  is governed by the differential equation  

 

   2 2 4
( ) 1 ,D w w D q                                        (1) 

where 
2

  is Laplace’s operator,   is poisson ratio, 
3 2

( , ) ( , ) 12(1 )D D x y Eh x y     is the variable flexural 

rigidity, ( , )h h x y  is the variable thickness, E  is Young’s modulus, q  is the distributed normal load and  
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                        a) Distributed Normal Load xq                         b) Foundation Modulus *k  

                 Figure 1 Rectangular plate of variable thickness on elastic foundation a) Geometry and 

                                load b) Description of elasticfoundation 

 

       The plate is fully attached to the elastic foundation of elastic coefficient k


. The intensity of reaction is 

proportional to k w


. Then 
2 2

2 2x x
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x t
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                                  (3) 

       The vibration of the plate is not considered and hence the last term of ‘equation (3)’ will be absent. Let the 

edge 0y   and y b  of the plate be simply supported, then the transverse deflection can be assumed in the 

separable form 

( , ) ( ) sin
n y

w x y W x
b


                                    (4) 

       ‘Equation (2-4)’ are used in ‘equation (1)’. The thickness of the plate is assumed as a function of x  only, 

given by 

( ) 1 sin
x a

e s

x n
h x h C C e C

a a



   

 
  

                                  (5) 

       If C , eC  and sC  are all zero, then the plate thickness becomes constant. If eC  and sC  are zero, then the 

thickness varies linearly. If C  and sC  vanish then the thickness variation is exponential. If C  and eC  are 

zero then the thickness variation is sinusoidal. We impose the conditions 1C   , 1/eC e   and 1sC   , 

which ensure that the thickness is always positive. 

       Assume also 

     xN h ,   
x

X
a

 ,     
y

Y
b

 , ( )
W

W W x

a

  , 
h

H
a


 ,   

q

b
  ,  f n                                    (6) 

A buckling coefficient K  and a foundation coefficient L  are defined by 
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For the least critical value of K , n  is least ‘[11]’ and hence we set 1n  . The differential ‘equation (1)’ becomes 
''' '' '
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sinp X   and cosq X                                    (10)              

       The ‘equation (8)’ is a linear differential equation with variable coefficients. Boundary conditions are 

imposed on the edges, 0X   and 1X  . Thus the ‘equation (8)’ constitutes as well-defined boundary value 

problem for 0 1X  . 

 

3     Method of Solution 

      Since a closed form solution for the differential ‘equation (8)’ does not exist, we hence to resort to numerical 

methods for solving it. The collocation procedure, using a quintic spline approximation for ( )W X  is used 

because the ‘equation (8)’ is of order four. 

       Therefore, the approximating spline function is assume to be  

                     

4 1

5

0 0

( ) ( ) ( )

N

i

i j j j

i j

W X a X b X X H X X





 

                                                     (11)  

In which ( )jH X X  is the Heaviside function and ia , jb  are the unknown coefficients. 

       This function has very attractive characteristics compared to many others from the point of view of 

convergence, accuracy and elegance of usage on computer and efficiency for computational work. 

       Let us assume that the subintervals are all equal in length. The knots are at 

s

S
X X

N
  ,  0,1, 2, ,s N . 

       Imposing the condition that the ‘equation (11)’ satisfies ‘equation (8)’ at each sX X , we have the 

following system of 1N   equations in the 5N   spline coefficients : 
0

a , 
1

a , 
2

a ,
3

a , 
4

a , 
0

b , 
1

b , , 
1N

b


. 

 

4     Boundary conditions 

       The boundary conditions of the plate considered are as follows: 

i. (C – C) : Clamped at both the edges 0X   and 1X   

ii. (C – S) : Clamped at 0X   and Simply supported at 1X   

 

       The pairs of boundary conditions that should be satisfied at a clamped edge, a simply supported edge and a 

free edge are respectively, 

                      0
w

w
x


 


(Clamped), 

2

2
0

w
w

x


 


(simply supported)                                                           (12)                       
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       Each of these cases gives four more equations on the spline coefficients. Combining these equations with 

‘equations (8)’ we have a generalized eigenvalue problem in the form of 

 

 [ ]{ } [ ]{ }M c K P c                                                               (13)   

     

Where [ ]M  and [ ]P  are the square matrices of order ( 5)N   and { }c  is a column vector whose elements are the 

spline coefficients. The eigenparameter is the buckling coefficient K , whose least value only is of interest since 

buckling occurs for the corresponding minimum value of , the critical load. After obtaining an initial 

approximation to the least value of K , its finer approximation is obtained using Regular-Falsi method. The 

eigenvector { }c  corresponding to this least K  determines the spline function 
*

( )W X  from which the mode 

shapes of buckling of the plate can be constructed. 

 
5     Results and Discussion 

       ‘Table 1’ shows the convergence study on K  with respect to the number of knot 6(2)18N  . Consistent 

improvement was observed in the value of K  with the increase in the number of knots. It has been found that it 

sufficient to keep 12N   since further increase in N  improves K  by less than 0.16%. 

 

Table 1 Convergence study 

 

N 

0.2, 1000, 0.5eC L      

C-S 

0.5, 200, 0.5C L      

C-C 

K % change K % change 

6 37.70713 - 29.26319 - 

8 37.83680 0.3439 29.33973 0.2410 

10 37.90233 0.1732 29.38955 0.1698 

12 37.96188 0.1571 29.43378 0.1505 

14 38.01875 0.1498 29.47737 0.1481 

16 38.06821 0.1301 29.51858 0.1398 

18 38.12082 0.1382 29.55642 0.1282 

        

               The K   relations obtained for 0L   (not attached foundation) and 0eC C   (sinusoidal 

thickness variation) are seen to completely agree with the results of ‘[12]’. The K   relations obtained for 

0L   and 0e sC C C    (constant thickness) are matching perfectly with those of ‘[13]’. The other results 

are new. 

 

The following parametric values are considered to analyse the problem. 

 
0.3,  0.5(0.25)2.5, 0.5(0.25)0.5, 0.2(0.1)0.2,         

0.5(0.25)0.5, 0(200)1000
e

s

C C

C L

      

  
                                          (16)   

 

The nature of variation of the least value of the buckling coefficient K  with respect to each of the five variable 

parametric values ( , , ,e sC C C  and )L , with the other four parametric values being fixed, is studied and 

depicted in the ‘figures (2-4)’. Some typical mode shapes of buckling of the plate are presented in ‘figure 5’. 

      The rate of change of K  with   may be discontinuous in some cases when 0L  (‘[2]’and ‘[12]’). It is now 

found to be so in some cases even when 0L  . 
‘Figures (2-4)’ depict the nature of variations of the value of the buckling coefficient K  with respect to the 

increase of the aspect ratio   for plates whose thickness varies linearly ( 0)e sC C  , exponentially 

( 0)sC C   and sinusoidally ( 0)eC C   for different values of the thickness variation parameter C , eC  

and sC  respectively, for two fixed values of the foundation coefficient, 200L   and 1000L  . They show 

clearly that the value of K  in general reduces with the increasing   for fixed values of the other parameters for 

all the type of boundary conditions considered. Again the K - values are found to be higher for higher values of 
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the thickness variation parameters C , eC  and sC . Further K  is found to be considerably higher for the higher 

value of the foundation coefficient ( 1000)L   than for its lower value ( 200)L  . These can be clearly attributed 

to the facts that the stiffness of the plate decreases with increasing   and increases with C , eC , sC  and L . It is 

also seen from the same figures that the K  values are the least, in general, for the C-S boundary conditions and 

a higher for the C-C boundary conditions.  

 

                                           

 
 

Figure 2 K   Diagrams for C-C plates 

 
     ‘Figure 4’ presents the nature of change of K  with respect to L  for two cases of aspect ratio, 1.5   and 

2   and the C-S boundary condition. As before, the linear ( 0)
e s

C C  , exponential ( 0)sC C   and 

sinusoidal ( 0)eC C   variations in thickness are considered. With increasing L , the values of K  are seen, in 

all cases, to increase, almost steadily for long ranges of values of L . The other characteristics of variation of K  

agree with those studied from ‘figures (2-4)’. 

    Qualitatively similar characteristics are observed in the variation of K  with L  for the considered other 

boundary conditions also. Some mode shapes of buckling are presented in ‘figure 5’. They can be viewed as the 

buckled shapes of the central line / 2y b  of the rectangular plate considered. The two rows of diagrams 

correspond to the two types of boundary conditions: C-C and C-S. The two  columns corresponds to the three 

types of thickness variation: linear (three cases), exponential (two cases) and sinusoidal (two cases). The case 3 

of diagrams in (a), (d) and (g) corresponds to constant thickness ( 0)
e s

C C C   and therefore is not shown in 

the other diagram to avoid repetition.  
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Figure 3 K   Diagrams for C-S plates 

 

 
 

 

Figure 4 K L  Diagrams for C-S plates 
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Two types of foundations are considered. The plate is not a square with 0.5  . The deflections have 

been normalized with respect to the numerically largest deflections. It can be observed that the two mode shapes 

marked 3 in ‘figure 5 (a)’ and all mode shapes in ‘figure 5 (c)’ are either symmetric or antisymmetric since they 

corresponds to symmetric geometric and boundary conditions (plates of constant thickness and sinusoidally 

varying thickness, under C-C conditions). The mode shapes in general, are interesting and informative. The 

buckling mode numbers for corresponding buckling loads, for example, can be easily inferred from the mode 

shapes.  
 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            Figure 5 Mode shapes of Buckling. 

 
                                 Boundary conditions: (a), (b), (c): C-C, (d), (e), (f): C-S.  

                                 Thickness Variation   : (a), (d): 0; 1e sC C  : 0.5; 2C  : 0.5;3C   : 0.0C   

     (b), (e): 0;1sC C  : 0.2; 2eC   : 0.2eC  .  

     (c), (f): 0;1eC C  : 0.5sC  ; 2: 0.5sC  . 

                                  Foundation Modulus:              : 200L  ; - - - - : 1000L  . 

 

 

6    Conclusion 

 

      Buckling of thin plates of linearly, exponentially and sinusoidally varying thickness and subject to a constant 

in plane load has been studied. The plate is resting on an elastic foundation and is subject to two types of 

boundary conditions on a pair of opposite edges with the other edges simply are supported. An elegant spline 

function approximation for the unknown transverse deflection is used and the buckling loads and mode shapes of 

buckling are computed. Extensive parametric studies are made.  
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