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Abstract. An efficient implementation of the lattice Boltzmann method (LBM) for the 

numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the 

nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative 

numerical procedure for the description of incompressible hydrodynamics and has the potential 

to serve as an efficient solver for incompressible flows in complex geometries. This work 

proposes the NSW equations for the irrotational surface waves in the case of complex bottom 

elevation. In recent time, equation involving shallow water is the current norm in modelling 

tsunami operations which include the propagation zone estimation. Several test-cases are 

presented to verify our model. Some implications to tsunami wave modelling are also 

discussed. Numerical results are found to be in excellent agreement with theory. 

 

1. Introduction 

        General patterns and important characteristics of tsunami can be predicted by various sets of governing 

equations. Euler equations remain the foundation  basis for tsunami propagation models, it describes the 

frictionless motion of water under the influence of gravity, and a number of equations that result from them in 

asymptotic limits ‘[1]’, including the classical wave equation, the forced Korteweg-de Vries (fKdV) equation, 

the Bousinnesq equation, or the shallow-water equations.  This theory deals with the gravity waves problem in a 

regular and arbitrary depth ocean, from which tsunami wave solution is derivable from the shallow water wave 

approximation to its full solution. Nonlinearity plays an important part in transforming tsunami waves in the 

region. These difficulties can be solved by nesting near-field models like as the full Boussinesq equation model 

or modelling of shallow water equation with a finer mesh system to the present transoceanic model as described 

in ‘[2]’. The NSW equations are accurate for long wave propagation and runup problems, in which the scale of 

the vertical length scale is smaller than that of the scale of the horizontal length, such as for most tsunamis. 

Besides tsunami, these equations are widely used in the field of ocean engineering (e.g., tide and ocean 

modelling) and atmospheric modelling, where one length scale is dominant. This work focuses on the modelling 

of tsunami using the lattice Boltzmann method or lattice Boltzmann model for shallow water equations 

(LABSWE). This technique has been selected due largely to its computationally efficient basic lattice Boltzmann 

algorithm, and its capability to handle complex geometries and topologies. Several works have already applied 

LBMs to standard shallow water benchmark problems and test cases. ‘[3]’ presented the so-called D2Q9 LBM 

implementation for the simulation of wave runup on a sloping beach. ‘[4]’ applied a similar LBM to test cases 

including bed slope and friction terms. The main focus of their work was to demonstrate the ability of the 

technique to cope with multifaceted geometries and random bathymetry. Although LBMs are accepted generally 

to deal with complex geometries and interfacial dynamics, certain difficulties emerge in the case of boundary 

conditions. 

 

2  Formulation of the problem 

2.1 Governing equations 

 

        Since the scale of the vertical length is lesser than the horizontal length (refer Figure1), in order to achieve 

shallow water equation, both the continuity and Navier-Stokes equations have to be integrated in-depth. Shallow 
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water equation are obtained from the depth integral of mass transport equation. The Coriolis effect for shallow 

water equations having forced wind term, bed slope and bottom friction terms is expressed as in ‘[5]’: 

Continuity Equation: 
 

0
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where i  and j denote Cartesian indices and Einstein summation respectively; h  is depth of the water, iu  is the i 

th direction-average depth velocity component, t denotes time. The term relating to forces is expressed as:  
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where bz  is bed elevation, 29.81g m s  acceleration force due to gravity,   viscosity of the kinematic energy 

and piF , is the force from outside exacted on the shallow water flow that consists of an appropriate hydrostatic 

pressure approximation, wiF denotes wind shear stress, biF is the bed shear stress, and the Colioris effect forcing 

term, ciF . 2 sincF    is the Coriolis parameter and   is rotation rate of the earth and   is the latitude, bz  is 

the bed elevation, 2
b zC g c  is the bed friction coefficient and 

1

6
z bC h n is both the Chezy and Manning 

coefficients at the bed, bn ,

1

3 .L T 
 

 
 
 

 is the water density, a  the air density,  30.63 0.66 10w wi wiC u u     is 

the expression for the coefficient of the wind, and wiu  is the i th direction velocity of wind. 

 
                                                                    Figure 1 Shallow water flow regime 

2.2  Lattice Boltzmann equation   

 

        The LBM is a numerical method for solution of flow equations without using the complicated shallow- 

water equations. It solves the lattice Boltzmann equation, and the depth and velocity can be calculated from 

macroscopic properties. Only simple arithmetic calculations are required to generate accurate solutions to flow 

problems with straightforward treatment of boundary conditions, and providing an easy and efficient way to 

simulate complicated flows.The lattice Boltzmann equation which includes a force term on a nine-velocity 

square lattice is given by 

      2

1
, ,

6
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t
f X e t t t f X t f f e F

e
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where  ,f x t  is particle distribution function, x is space vector, t is time, e  is particle velocity vector, where 

1,...,9, ,e x t x       is lattice size, x  is time step,   is single relaxation time factor. The stability of the 

equation requires that 1 2   and    ,
eq

f x t  is the equilibrium distribution function at time t . iF  is the i th 

direction force component. 

 

2.3  Definition of macroscopic quantity 

 

The water depth h  is given as      , , ,eqh X t f X t f X t                           (4) 
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The macroscopic quantity velocity  ,u X t is defined as   

 

                (5)      
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2.4  Equilibrium Distribution Function For 2D Shallow Water Equations 

 

Considering the theory of the lattice gas automata, the equilibrium function is the Maxwell-Boltzmann 

equilibrium distribution function. This distribution function is often expanded as a Taylor series in macroscopic 

velocity to its second order. It is assumed that an equilibrium function can be stated as a power series in 

macroscopic velocity   
eq

i i i j i j i jif A B e u C e e u u D u u           ,          (7)     

It is convenient to write the equation above in the following form, 
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The coefficients can be determined based on the limitations of the equilibrium distribution function. The 

macroscopic quantity’s three conditions must be satisfied by the local equilibrium distribution function in 

shallow water equation. The calculation of the Lattice Boltzmann equation leads to the resolution of the 2D 

equation for shallow water if the local equilibrium function could be determined under the above constraint. 

Substituting ‘equation (8)’ in ‘equations (4-6)’ and evaluating the terms with   
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and after the coefficients are decided, this results in 
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2.5    Boundary and initial conditions  

 

         In order to solve shallow water flow problems by use of LABSWE, suitable boundary conditions must be 

provided. Generally speaking, in the application of boundary conditions in LBM, the temporal/spatial flexibility 

is allowed. This is briefly described as follows: solid boundary conditions;  no-slip or slip boundary conditions 

may be used. For no-slip conditions, the normal bounce-back scheme can be applied. For slip conditions, a zero 

gradient of the distribution function perpendicular to the solid wall can be employed. Representation of boundary 

inflow and outflow and periodic boundary conditions are used in the verification of the models. 

 

 

3     Results and Discussion 

 

       In the following, the NSW-LBM code is applied to three benchmark problems or test-cases widely used in 

the tsunami community: (i) 2D Tidal flow over a regular bed in 3D plot; and (ii) 2D Tidal flow over an irregular 

bed in 3D plot; and (iii) 2D steady flow over an irregular bed in 3D plot. In all cases, the LBM solution is 
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compared to the available analytical/numerical or experimental reference solutions, and to other results from the 

literature.  

 

3.1 2D Tidal flow over a regular bed in 3D plot 

 

        Tidal waves often occur in coastal engineering. ‘[6]’ test problem is used in verifiying upwind discretisation 

of the source of bed slope terms. A two dimensional problem in which is defined the bed topography as 

( ) 50.5 40 10sin (4 1 2)G x x L t L       ,where ( )G x is the incomplete depth between a preset reference plane 

and the bed plane, giving ( ) (0) ( )bZ x G G x  .The initial water height and velocity are ( ,0) ( )g x G x and 

( ,0) 0u x   . At the channel’s inflow and outflow, we define 
4 1

(0, ) 20 4sin
86400 2

t
g t 

  
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( , ) 0u L t  respectively. The asymptotic analytical solution for the short tidal wave is given by ‘[6]’: 
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                                                 (11) 

The D2Q9 velocity model is used. The slip or non-slip boundary conditions are used at the solid walls. For the 

non-slip condition, the bounce-back plan is used and for slip conditions, a zero gradient of the distribution 

function perpendicular to the solid wall is employed and periodic boundary conditions are applied in the upper 

and lower walls. To achieve a lattice-independent solution, lattices of 15000 6000  and the lattice speed 

200e m s and 0.6   are also used. The results are given in ‘figures 2-5’. This confirms the accuracy of the 

model for unsteady shallow-water flow problems. The present method can provide solution of equal accuracy as 

found in ‘[6]’, where they used a complex upwind discretisation for the source term of the bed slope. 
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                   Figure 2  Numerical tidal free surface                  Figure 3 Numerical tidal free surface      

                   wave flow at time t=0.0                                          wave flow at time t =1.00. 
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         Figure 4  Numerical tidal free surface                          Figure 5  Numerical tidal free surface 

         wave flow at time t=50.0.                                                  wave flow at time t = 100.00. 

 

3.2  2D Tidal flow over an irregular bed in 3D plot  

 

Let us consider a tidal flow that occurs over a bed that is known not to be regular as further test for the capability 

of the LBM for shallow-water equation. The bed is the same as that defined in ‘Table 1’. For numerical 

computations, the D2Q9 velocity model is used with eqf  defined.The structure of the grid contains 150 60   

0 5000 10000 15000 
0 2000 4000 6000 66 

68 
70 

0 2000 4000 6000 8000 10000 12000 14000 0 
20 
40 
60 
80 

0
5000

10000
15000

0
2000

4000
6000

66

68

70

0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

AeroEarth 2014 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 23 (2015) 012007 doi:10.1088/1755-1315/23/1/012007

4



lattice points with, the initial and boundary conditions are ( ,0) 16 ( )bg x Z x   and ( ,0) 0u x   and 
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t
g t 

  
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and ( , ) 0u L t   , and thus the asymptotic analytical solution of the short tidal 

flow is  
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                                         (12) 

The centred scheme is employed for the force term. In order to contrast the numerical results and the asymptotic 

analytical solution, we select two results at 10,800t s  and 32,400t s  , which relate to the half-risen tidal flow 

with maximum positive velocities and to the half-ebb tidal flow with maximum negative velocities and presented 

the results as shown  in ‘figures 6-8’. These figures shows that the numerical calculations and that obtained 

analytically are excellently in agreement. This supports the claim that the centred scheme is likewise correct and 

conservative for tidal flow that occurs over a bed that is known to be irregular. The results acquired with the 

basic and second order schemes are also carried out. Comparisons are done for the water surface and maximum 

positive velocities at 10,800t s . It is obvious from the figures that only the centred scheme yield accurate result. 

 

Table1 Bed elevation bz  at point x for irregular bed. 

x  0 50 100 150 250 300 350 400 425 435 450 475 500 505 

bz  0 0 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9 

x  530 550 565 575 600 650 700 750 800 820 900 950 1000 1500 

bz  9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0 

 

 
Figure 6   Numerical free surface for tidal flow                 Figure  7  Numerical free surface for tidal 

over an irregular bed at time t = 1.0.                                  over an irregular bed at time t = 30.0.    
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Figure 8  Numerical free surface for tidal flow over an irregular bed at time t = 70.00. 

3.3  2D steady flow over an irregular bed in 3D plot  

 

The bed landscape is described in ‘tables 1-3’are shown in ‘figures 9-12’. 
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         Figure  9  Numerical free surface for steady flow      Figure  10  Numerical free surface for steady flow  

         over an irregular bed at time t = 1.00                        over an irregular bed at timet = 2.00 

 

 
         Figure  11  Numerical free surface for steady             Figure  12  Numerical free surface for steady 

         flow over an irregular bed at time t = 10.00.               flow  over an irregular bed at time t = 60.00 

 

 

 

 

 

                                          Table 2. Values of various parameters used for the wave  

                                          Propagation over an oscillatory bottom test-case. 

Initial wave number  k  

 
1

2
m


 

Gravity acceleration g  1
2

ds ms


  

Initial wave amplitude b  0.2 m  

Undisturbed water depth 
0

d   1 m  

Bathymetry oscillation amplitude    0.001 m  

Low bathymetry oscillation wavelength  

2
k  

2
2

m


 

High bathymetry oscillation wavelength   

z
k   

 6
2

m


 

relaxation time    1 

Real Channel Length rx  20 

 

 

 

 

Table3.Values of various parameters used for different test-case. 
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21 

0 500 1000 1500 0 
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0 500 1000 1500 
0 200 400 600 10 

20 
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5 

10 
15 
20 
25 
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0 200 400 600 15 
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Values of various 

parameters used 

Tidal Flow over a 

Regular Bedtest-

case. 

Tidal Flow over an 

Irregular Bedtest-

case 

Steady Flow 

over a 

Bumptest-case 

Steady Flow over 

an Irregular 

Bedtest-case 

   relaxation time    0.6 1.5 1.1 0.9 

 Real Channel Length  
               rx  

14000m 1500m 2m 1500m 

dx  0.05m 0.05m 0.05m 0.05m 

0
h  64.5m 20m 1.8m 20m 

Gravity acceleration g   9.81 dx  9.81 dx  9.81 dx  9.81 dx  

xu  0 0 0.005 0.05 

yu  0 0 0 0 

 

 

4  Conclusions 

A new lattice Boltzmann model is suggested to solve the 2D NSW wave equations. The efficiency and accuracy 

of the model are confirmed via thorough numerical simulation with lattice Boltzmann equation. It is noted that in 

order to attain better accuracy the LABSWE requires a relatively small time step Δt and the proper range is from 
3

10


 to  
4

10


. The work would like to underline the importance of a robust runup algorithm development using 

the current model. This research should shift forward the accuracy and comprehension of a water wave runup 

onto complex shores. The results obtained reveal that NSW equation has sufficient prediction ability for 

maximum runup value. In conclusion, we have used three examples to test the LBM. It can be concluded that 

LBM performs well for such problems. The numerical results agree with the theory and hence, one can conclude 

that the stability structure is a good tool for designing the LBM. Furthermore, on the time-dependent problems 

on the unsteady problem, excellent and accurate results are obtained with no additional steps on the source terms 

or complicated upwind discretization of the gradient fluxes. 
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