Cheshmehgaz, Hossein Rajabalipour and Haron, Habibollah and Sharifi, Abdollah (2015) The review of multiple evolutionary searches and multi-objective evolutionary algorithms. Artificial Intelligence Review, 43 (3). pp. 311-343. ISSN 0269-2821
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s10462-012-9378-3
Abstract
Over the past decade, subdividing evolutionary search into multiple local evolutionary searches has been identified as an effective method to search for optimal solutions of multi-objective optimization problems (MOPs). The existing multi-objective evolutionary algorithms that benefit from the multiple local searches (multiple-MOEAs, or MMOEAs) use different dividing methods and/or collaborations (information sharing) strategies between the created divisions. Their local evolutionary searches are implicitly or explicitly guided toward a part of global optimal solutions instead of converging to local ones in some divisions. In this reviewed paper, the dividing methods and the collaborations strategies are reviewed, while their advantage and disadvantage are mentioned.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | dividing methods, evolutionary search |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computing |
ID Code: | 58988 |
Deposited By: | Haliza Zainal |
Deposited On: | 04 Dec 2016 04:07 |
Last Modified: | 14 Dec 2021 08:52 |
Repository Staff Only: item control page