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ABSTRACT 

Coupled fibers are successfully fabricated by injecting hydrogen flow at 1bar and fused slightly by unstable torch 
flame in the range of 800-1350oC. Optical parameters may vary significantly over wide range physical properties. 
Coupling coefficient and refractive index are estimated from the experimental result of the coupling ratio distribution from 
1% to 75%. The change of structural and geometrical fiber affects the normalized frequency (V) even for single mode 
fibers. Coupling ratio as a function of coupling coefficient and separation of fiber axis changes with respect to V at 
coupling region. V is derived from radius, wavelength and refractive index parameters. Parametric variations are performed 
on the left and right hand side of the coupling region. At the center of the coupling region V is assumed constant. A partial 
power is modeled and derived using V, normalized lateral phase constant (u), and normalized lateral attenuation constant, 
(w) through the second kind of modified Bessel function of the l order, which obeys the normal mode, LP01 and normalized 
propagation constant (b). Total power is maintained constant in order to comply with the energy conservation law. The 
power is integrated through V, u and w over the pulling length range of 7500-9500µm for 1-D where radial and angle 
directions are ignored. The core radius of fiber significantly affects V and power partially at coupling region rather than 
wavelength and refractive index of core and cladding.  This model has power phenomena in transmission and reflection for 
industrial application of coupled fibers.  
 
Keywords: model, fibers, coupling, ratio, coefficient, frequency, power. 
  
INTRODUCTION 

The waveguide carrying electric field, a single 
mode fiber (SMF-28e®) has been successfully coupled by 
two fibers with the same geometry 1X2 splitting one 
power source to become two transmission lines as Y 
junction. The fibers are approximately heated with a 
slightly unstable torch within a temperature range of 800-
1350C. A laser diode source λ =1310nm is used to guide a 
complete power transfer over a distance of z. The coupling 
ratio set cannot determine that the cladding diameter is 
constant even though the LP01 diameter position has been 
achieved. The decrease of the refractive index at the 
junction fibers is due to effects of structural and 
geometrical fiber by pulling them at a coupling region, 
while the 2 cores distance is closer than the radius of those 
two claddings (Pone 2004). The SMF-28e® core after 
fusion is reduced from 80.5% to 94% (Saktioto 2007). A 
half distance of pulling length of fiber coupler increases 
significantly over the coupling ratio. The coupling length 
increases over coupling ratio due to the longer time taken 
at the coupling region by a few milliseconds to attain a 
complete coupling power.  

During fusion, the power transmission and 
coupling coefficient are fluctuated slightly due to the 
effects of twisting fibers, fibers heating, and refractive 
index changes (Saktioto 2007; Senior 1996) which cannot 
be easily controlled easily. However, experimentally the 
coupling coefficient is in the range of 0.9-0.6/mm 
corresponding to refractive index of the core and cladding 
at values of is n1 = 1.4640-1.4623 and n2 = 1.4577 - 1.4556 
respectively for coupling ratio of 1 - 75%. The separation 

of fibers between the two cores is obtained at a mean value 
of 10-10.86µm (Saktioto 2007). To obtain a higher 
coupling power, the experimental result should meet the 
power transmits at the coupling region for a larger 
coupling length.  

A fusion process will change the structures and 
geometries of coupled fibers at the coupling region. These 
changes are complicated as the refractive indices and fiber 
geometries are made uncertain due to the slightly unstable 
torch flame and coupling ratio effect (Kashima 1995). 
However, they tend to decrease along the fibers from one 
edge to the center of the coupling region and again 
increase to the other. It also occurs to the wave and power 
propagation partially but total power obeys the energy 
conservation law (Yariv 2003). The coupling region itself 
has three regions based on the core and cladding geometry 
which is situated at the left, center and right. At the center 
of the coupling region, the main coupling which the power 
propagation splits from one core to another through the 
cladding.  

Although the coupling ratio research has shown 
good progress in the experimental and theoretical 
calculation, coupled waveguide fibers still have reflection 
and power losses due to effects of fabrication. Coupling 
fiber fabrications do not only take into account the source 
and waveguide but also involves some parametric function 
that emerges along the process when information transfer 
to fibers occurs (Sharma 1990; Yokohama 1987). This 
results in a complicated problem, particularly at the 
junction as the electric field and power are affected by the 
waveguide, the structure and the geometry of the fiber 
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itself. The loss of transmission and coupling power is 
significant especially in delivering the power ratio.  

To investigate the coupling region, the power is 
simply derived and modeled. The power propagates along 
SMF-28e® depending on the normalized frequency. The 
normalized frequency is a function of the core radius, 
wavelength, and the refractive index of core and cladding. 
The partial power change and its dependence on 
normalized frequency parameters are studied. This paper 
describes power gradient and its integration as computed 
from coupling coefficient range and coupling region data 
which is experimentally obtained from the coupling ratio 
distribution.  
 
PARTIAL POWER GRADIENT MODEL 

Wave propagation in cylindrical waveguide for 
medium is assumed isotropic, linear, non-conducting, non-
magnetic but inhomogeneous. The wave equation is as 
follows: 

 
∇ 2E + ∇ {(1/εr) ∇( εr) . E} - µoεo ∂2E/∂t2 = 0 

 
The wave equation of electric field vector E, 

where n=√εr, is similarly for magnetic field H, where it 
changes to scalar Ψ as: 

 

∇ 2Ψ = εoµo n2 ∂2Ψ/∂t2 

 

Solving this equation for an ideal step-index fiber 
under the weakly guiding approximation, gives a set of 
solutions [8], 
 
Ψ(r,φ,z,t)= R(r) eilφ ei(ωt – βz) 

 

       A Jl (ur/a)       cos(l φ) ; r<a 
where R(r) =                                        sin(l φ) ; r<a 
      B Kl (wr/a)      cos(l φ) ; r>a 
                                                            sin (l φ)  ; r>a 
 

A and B are constant, Jl and Kl are Bessel and 
Hankel functions (the second kind of modified Bessel 
function), where the solution depends upon normalized 
lateral phase constant (u), and normalized lateral 
attenuation constant, (w) for modes l (0,1,2,…). The 
Bessel functions Jl (ur/a) are oscillatory in nature, and 
hence there exists m allowed solutions (corresponding to 
m roots of J1) for each value of l. Thus, the propagation 
phase constant β is characterized by two integers, l and m. 

Single mode fiber (SMF) has dominant mode, 
LP01 with normalized frequency, V=2.405. It has two radii 
with two refractive indices n1≈n2 where n1 and n2 are core 
and cladding respectively, and the radius is the 
discontinuity at r = a.  When two coupled fibers are being 
fused and pulled, the value changes depending on the 
wavelength source and material of the fibers. At coupling 
region the changes of some optical parameters are due to 
the structural and geometrical properties of the fibers. 
Fiber sizes are decreased and increased on the left and 
right coupling region. At the center of the coupling region 
it is assumed to be constant. Consider the pulling length of 
fibers as follows: 
 
PL= PL1 + PL2 + PL3, 
 

Where PL1 = PL3 and PL2 = CL (CL is coupling length). 
 

Power propagation (P) along coupling region can 
be reflected and transmitted as a normalized frequency. 
The total power input and output must however be 
conservative. Total scalar power for core and cladding 
power can be defined as follows (Khare 2004): 
 
 
 
 
 

 

P = Pcore + Pcladding 
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then, 
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P = C π a2 (V2/u2) [                                 ]      (1) 
 
 

Where C is constant of A and B, a is core radius, 
u is normalized lateral phase constant, w is the normalized 
lateral attenuation constant, K is the second kind of 
modified Bessel function of order l. For a k range species 
of coupling region, total power can be written as a sum of 
partial power, 
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For simplicity, the first, sec
                                             

ond and third term of the equation (2), respectively is noted as the following:  

  ∇ = {[A] x [B]} – [C]                (3)                    ∑
−+=

3

),0,(k
kP

 

Firstly, consider {[A] x [B]} as a function of u, V, and a, where  
 

u2   ≡ (k2n1
2 -  βlm

2)a2

w2 ≡ (βlm
2 - k2n2

2)a2;   β1= kn1 ; β2= kn2                        (4) 
V    = (u2 + w2)1/2 = (2πa/λ) (n1

2 – n2
2)1/2

 

Where l and m are the number of modes, β is the propagation constant and k is the wave number. The left hand 
side of Equation (4) have parametric values dependent on the values of  u = u(a,k,n1,βlm), w = w(a,k,n2,βlm), and V = 
V(a,n1,n2,λ) [8]. The value of βlm is calculated from the normalized propagation constant b,  
which is equal to (β2

lm- β2)/ (β1- β2). Since w is a part of K function, then it can be derived by the K function itself. 
Evaluating these functions separately over z direction we find, 
 

∇ u   =[(ak2n1
2da/dz + ka2n1

2dk/dz + n1k2a2 dn1/dz) – (aβlm
2da/dz + βlm a2dβlm/dz)] / (u) 

∇ βlm =[ β2(dβ2/dz) +  blm( β1 dβ1/dz  -  β2 dβ2/dz)] / (βlm) 
∇ V  = 2{(π/λ)(n1

2– n2
2)1/2da/dz + πa(n1

2–n2
2)1/2[d(1/λ)/dz] dλ/dz               (5) 

          + (2πa/λ) [½ (n1
2 –n2

2)-1/2] (n1dn1/dz - n2 dn2/dz)} 
 

Where dblm/dz is expected to be zero, and thus can be ignored. The first and second terms of equation (3) can be 
rewritten by combining equation (5) as follows: 
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The K function can be derived by the first order resulting in, 
 
[C] =  C π a2 (V2/u2) 
 
 x {                    }          (7) 
 
 
 Equations (6) and (7) are then combined to have a solution of equation (3). In order to obtain a complete 
solution, the second kind of modified Bessel function of order l is substituted by a recurrence relation for a given function 
as,  
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Then it is finally given by,       
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Equation (8) can be computed by setting a 

number of known parameters and evaluated within the 
boundary conditions of coupling region as defined by 
equation (3). Since the total power obeys the energy 
conservation law, then ∇ P = 0. It can then be applied for 
each k re ion as: g

  

∇   ∑
−+=

3

),0,(k
kP  = ∇ P|+  + ∇ P|0 + ∇ P|-  = 0 

The value of ∇ P| + corresponds to positive 
gradient where the radius of fibers is decreased and 
negative gradient when the radius of fibers is increased at 
∇P|- . At PL2, it is assumed that ∇P|0 ≈ 0. For a simplified 
partial power model, the fibers are imposed by setting a 
temperature and the change of fiber properties as 
inhomogeneous. At PL1 the value of a linearly changes as 
same as n1 and n2 towards the temperature. Meanwhile, the 
wavelength linearly depends upon n1 and n2. These 
parameter changes are the same at PL3 but with the 
opposite sign. Therefore, the total power is constant, but 
the partial power is not zero. It can be written as: 

 

∇ P| +  ≠ 0,  ∇ P|-  ≠ 0,  but  for ∇ P|0  ≈  0                 

For the range of coupling region where P will be 

calculated, and to correct 
dz
dP

 for effect of change in 

fibers geometry, Equation (8) can be derived and fixed to 
be a constant value.  
Suppose total and derivation of P is rewritten as: 
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dz
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Where the total ∇ P is not constant. Hence, 
 

P∇
1

dz
dP

 =  
z
1

 
 

where z is the power direction. Multiplying both sides with 

Pk and 
P∇

1
for normalization of ∇P, equation (9) 

becomes, 
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In order to keep total ∇P constant, we combine the two terms of equation (9) and (10) for Pk obtaining 
 

dz
dP

P
P

dz
dP

dz
dP k

correction
k

∇
−= )()(             (11) 

 
This formula expresses that during the power propagation at the coupling region, total ∇ P is constant even though Pk 
changes. For illustration, this model can then be depicted in Figure-1.  
 
 
 

Kl−

l

l+

   45 



                                   VOL. 3, NO. 1, FEBRUARY 2008                                                                                                                    ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

    Torch Flame 
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Pb

 
 

Po P1                P|+= P1+(dP1 /dz) z     P|0=P2    P|-=P2+(dP2 /dz)z       P1                          z 
 
           Core       Cladding                     PL1                PL2            PL3

       
 

Figure-1.  SMF-28e® coupler fiber is heated by H2 gas at the temperature of 800-1350C. The core and cladding reduce 
75-90% in size after fusion. Total pulling of fibers to the left and right side is in the range of 7500-9500µm with 

a velocity of ≈ 100µm/s. Pulling is stopped subject to the coupling ratio achieving a pre-set value. 
 
INTEGRATION OF POWER AND DISCUSSIONS  

The values of P partially change at the coupling 
region are integrated over z direction of core radius and a 
half pulling length.  It is run in Ode45 Matlab platform 

with a set of input data for refractive index of core and 
cladding, wave length and initial P. For the given values 
of equation (4), it shows that at PL1, the result is as 
follows:

 
∇( a)|+      = 1044.3864 to 796.8127 x 10-6, 
∇( λ)|+n1   = -0.0006542 to -0.0010101 x 10-9,  
∇( λ)|+n2   = -0.0008376 to -0.0012823 x 10-9,                       
∇(n1)|+     = 1.05 to 1.65 x 10-6,   
∇(n2)|+     = 1.35 to 2.05 x 10-6,                                                                                 (12) 
      da/dz =  7.9681 to 9.0039 x 10-4, dk/dz = 2.3952 to 3.6983,  

                                dn1/dz =  1.05 to 1.65 x 10-6,        dn2/dz = 1.35 to 2.05 x10-6

                                dβ1/dz =  8.5516 to 13.3419,        dβ2/dz = 9.9779 to 15.2409,   
                               dβlm/dz =  9.2064 to 14.2137,  
                                      ∇u = 322.5195 to 364.4422, 
               ∇V = 475.5291 to 537.3407  
 

These parametric values exist as a result of the 
coupling ratio in the range of 1 to 75%. It has a function of 
coupling coefficient and produces the parametric values 
gradients existing in that number range. The value of λo/λ 
= n moves to decrease along PL1 until it meets the 
coupling length and inversely increases along PL3. The 

equation (12) is similar to PL3 but the gradient is in the 
opposite sign.  

The graph of ∇P at PL1, as calculated from 
Equation (10) is the power gradient at the first and end of 
the coupling region as depicted in Figure-2.  
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Figure-2. ∇P along coupling region;∇P =1.18 at first of PL1 and 1.26 at end of PL1
at coupling region z = 3.75x10-3m. 

 
Comparing the two curves, it shows that the 

change of partial P is less than that shown at the end of 
PL1. It shows that end of PL1 has decreased smoothly due 
to the fact of pulling length and heating of fibers at end of 
PL1. It also meant that the higher gradient to reach 
coupling length has resulted in the more reflection of 
power to the source fiber and crosstalk fiber due to the 
refractive indices gradient and more loss of power from 
the core to the cladding and to the edge cladding due to the 
radius gradient. This result has the same values for PL3 but 
in the negative gradient.  

If we assume that partial ∇P is not linear and 
exponentially decreasing or increasing. If it is affected by 
the function factor P = P (1+e-α) then the radius geometry 
is not proportional to the speed of pulling length and if by 
the function factor P = P (1-e-α) then it means that the 
fibers are not precisely heated at the center of fibers and 
the gradient of refractive indices will be close to factor   
10-3. However, these reasons are negligible, since the 
mechanical process of the fabrication is fixed and the 
radius change is much more significant than the other 
parameters.  

 
                   Table-1. Calculation of partial ∇P in each term of equation (8). 

 

No. Calculation Result Term 
1 (0.2857 – 0.0546i) to (0.3229 – 0.006171i) I 
2 (0.9899 + 0.5456i)  II 
3 (-7.3511 x 10-4 + 1.45057 x 10-4i)  III 
4 (0.1154 – 0.1875i)  IV,VII 
5 (-0.3056-0.2007i)  V,VII 
6 (0.0177 + 0.6021i)  VI 
7 (0.1154 – 0.1876i)  V,VI,VII 
8 (-0.2169 + 0.4334i)   VIII 
9 (0.3126 + 0.10181i) to (0.3533 + 0.1150i) I and II 

10 (-1.847 x10-5 – 4.0113 x 10-5i)  III to VIII 
11 (0.3126 + 0.1018i) to (0.3533 + 0.1150i) I to VIII 

 
Based on Table-1, the results are significantly 

affected by multiplication of term I and II by a factor of 
10-1 rather than multiplication of term III until term VIII. 
Before being derived, term II is comparable towards term I 
in contributing the power. In fact, the order of l deserves to 

the balancing of term I, but term III is too high a factor by 
the order of 10-4, then the effect of power gradient is 
seemingly contributed by term I. The main influence of 
term III is the value of core radius by factor of a2 which 
similarly occurs in term I. However, since term I is a 
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summation operation then it disappears. Therefore, 
partial∇P is reduced by the value of a and ∇P is otherwise 
increased by K function of l order in term II. In other 
words, in summation operation, K function is dominant 
but in reduced operation, the value of a becomes 
significant. The partial power gradient at PL1 and PL3 
results in parametric changes to reduce or to add power 
significantly along coupling region. This calculation can 
also be seen in Figure-3.  As shown by the straight lines in 
Figure-3, when power gradient is integrated, it describes 
the first PL1 as higher than that of end PL1. The left 
coupling region is set at z = 0 and let the power curves 
move from P input to the output at 3.75 x 10-3mm. This 
phenomena expresses the change of each parameter of P is 
set nearly linear although the actual changes are not 
obvious. One of the parametric values of P is evaluated in 

linear assumption that gives a significant dependence in 
changing to both gradient and integral of P is radius of 
core by order 10-3. Refractive indices and wavelength do 
not necessarily have linear impact since refractive indices 
and wavelength difference are by the order of 10-6 and 10-9 
respectively. Therefore the linear effect is maintained to 
retain the mode at LP01. The P input value changes at 
coupling length position from 1 mW to 0.31mW for one 
core and 0.62mW for two cores. Implicitly it shows that 
the partial power transmission will reduce along the 
coupling region as a result of refractive indices, core 
geometry and separation of fiber axis between the cores. 
This partial power results seem to be very significant, but 
it actually decreases or increases partially from one core 
source radiates to its cladding and also to another core and 
cladding when coupled. 

 

 

s

 

 

Power of two core
 

 
 

Figure-3(a) 
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 From first of PL1 to end of PL3 
 
 
 
 

                1mW       z 
                   

Power (mW) 

1 cladding 
                   

          dP/dz            1 cladding 

  
0.62mW (2 cores) 

 
                                                                                                             0.31mW (1core) 

           
                  Coupling length 

                                                                                       0 

Power out (1mW) Power in (1mW) 

 
Figure-3(b) 

Figure-3. P integration over coupling region (power source of one core); 3(a)  
          and Illustration of power propagation; 3(b). 

 
Table-2 describes the details of parametric value 

changes along the coupling region. A validation of code 
results is maintained by the initial and final P, while at the 

coupling region (excluding coupling length) it is assumed 
to change linearly.  

 
Table-2. Power parameters of coupled SMF-28e®. 

 

Parameter ∇ at first of PL1 ∇ at end of PL1
∇ at  
PL2

∇ at first of PL3 ∇  at end of PL3

z position 0                         3.75x10-3                          5.42x10-3                        7.5x10-3mm  

λ 0 to 4.5x10-9   (+) 0 to 7x10-9      (+) 0 0 to -7x10-9     (-) 0 to -4.5x10-9    (-) 

a 0 to 1.5           (+) 0 to 2              (+) 0 0 to -2             (-) 0 to -1.5          (-) 

n1,n2 0 to -2.55x10-7 (-) 0 to -3.48x10-7(-) 0 0 to  3.48x10-7(+) 0 to  2.55x10-7(+) 

βlm 0 to 0.035       (+) 0 to 0.054       (+) 0 0 to 0.054       (-) 0 to 0.035       (-) 

u 0 to 1.2           (+) 0 to 1.38         (+) 0 0 to 1.38          (-) 0 to 1.2           (-) 

V 0 to 1.8           (+) 0 to 2              (+) 0 0 to -2             (-) 0 to -1.8          (-) 
 

Initial SMF-28e®      V= V1 = 2.4506; n1 =1.4677 and n2 =1.4624;                and a = 4.1 x 10-6m 
The initial core and cladding diameter are respectively 8.2µm and 125µm  
C = 6.4032x106 – 1.2245x106i, P =1mW;      Pcladding/Ptotal = 0.1702,               Pcore/Ptotal = 0.8298,     
After Fusion: V= V2 = 0.9761- 0.3353; n1 =1.4623-1.4640; n2 =1.4556-1.4577; and a = 0.5-1.5 x 10-6m 
(V, V1 and V2 values are calculated from refractive indices known. The symbol of (+) and (-) indicates positive 
and negative gradient respectively and deal with along each z direction 0 to 3.75 x 10-3mm). 

 
CONCLUSIONS  

Coupling ratio range of 1 to 75% with coupling 
coefficient at 0.6-0.9/mm has successfully been developed 
for partial power gradient and its integration along the 
coupling region. Normalized frequency and power 
gradient give significant parametric changes over power 
transmission into fiber at coupling region from the power 
source of one core. The core radius is much more affected 
to ∇P rather than the refractive indices and wavelength 
although they change linearly.  
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